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Abstract - The present paper introduces the concept of adaptive automata as an 
alternative formal tool for describing context-dependent languages. This formal 
framework has the advantage of allowing easy mapping of a language description into an 
efficient parser for that language. Such a good performance is due to the potential 
hierarchical structure adaptive automata may exhibit, allowing natural construction of 
acceptors no more complex than strictly needed by each particular language. Efficiency 
is also due to the way adaptive automata operate, by changing according to its input, 
including and discarding transitions as needed to parse the particular input text - adaptive 
automata start from an initial self-modifying version, and evolve through a path of 
intermediate configurations until a final configuration is reached, when the source text is 
exhausted. The evolution from an automaton's configuration to the next one may be 
designed to occur strictly when a construct is found which is not recognized by the 
current configuration of the automaton. So, one may view the acceptance of a particular 
sentence as a sequence of recognitions of its substrings, each operated by the 
corresponding configuration of the adaptive automaton. That offers a practical way for 
efficiently accepting context-dependent languages in a purely syntactical way, allowing 
full treatment for syntactical aspects of the language such as dynamic syntax and the so-
called static semantics. Then, the use of adaptive automata brings the possibility of  
handling in a purelly syntactical way several autentically syntactical concepts, such as 
predefined words, symbol-tables, scoping, type-checking, argument-to-parameter 
matching, macro definitions and expansions, syntax macros for defining new language 
constructs, and many others, usually treated semantically, or resolved outside the parser. 
 
 

1. Introduction 
 
 This work introduces a formal model designed to describe context-dependent 
languages by means of a recognition device whose operation may be split into a sequence 
of partial recognitions of successive substrings of the input text by corresponding finite-
state or pushdown-automata. 
 In a well-designed such a device, starting from a fixed initial configuration, each 
intermediate recognizer is obtained from the earlier one by means of input-driven self-
transformations which gradually modify the shape of the automaton according to its 
needs for parsing the current input string. 
 This behavior is achieved by dynamically inserting and removing states and 
transitions, which are themselves allowed to further modify the resulting automaton. 
 Each intermediate recognizer may be viewed as a set of finite-state submachines, 
executing internal transitions in order to consume regular substrings of the language and 
external transitions to make calls and returns to submachines. 
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 This organization was inspired on ideas from an early work by Conway [6] and 
from papers by Barnes [1] and Lomet [7]. 
 In such a scheme, regular languages may be recognized by one of these 
submachines alone, with no help of any auxiliary storage. 
 Context-free languages may be accepted by using an additional stack to hold 
return states, in the same way sequential computers handle return addresses to perform 
procedure calls and returns. 
 So, each nonterminal may be implemented by a different submachine, activated 
through calls from any submachine implementing the current intermediate recognizer. 
 After recognizing the nonterminal associated to a submachine, its caller is 
resumed at a state retrieved from the top of the stack. 
 This structural simplicity allow the device to achieve an excellent speed by 
working essentially as a finite-state machine. 
 This approach is also found in several recent independent works, such as those by 
Cabasino [4] and Burshteyn [2,3], and the ones surveyed by Christiansen [5], although 
most of these tend to use grammatical formalisms, while our approach explore devices 
based on automata. 
 
 
2. Structured Pushdown Automata 
 
 Before presenting adaptive automata, its basic underlying mechanism is 
informally described as being implemented by specially organized context-free 
recognition devices called structured pushdown automata. 
 Structured pushdown automata may be viewed as sets of finite-state devices with 
internal and external transitions, called submachines. 
 Internal transitions are those responsible by consuming input text and by state 
changes within a particular submachine. 
 External transitions provide means for calling a submachine from another one, 
and for returning back to the caller from final states of called submachines. 
 A structured pushdown automaton is a 8-tuple 

M = ( Q , A , Σ , Γ , P , Z0 , q0 , F ) 
where Q is the set of states of M, Σ is its input alphabet, Γ is its stack alphabet, to which 
the empty-stack marker Z0 belongs, q0 is a member of Q, denoting the initial state of M, 
and F is a subset of Q, representing the set of final states of M, all these elements having 
the standard meaning. 
 Set A is the collection of submachines ai , i=1,...,n, implementing M, each of the 
form 

ai = ( Qi , Σ , Pi , q0,i , Fi ) 
where { Q1 , ... , Qn } and { P1 , ... , Pn } are respectively partitions of Q and P, F is a 
subset of Q , representing the set of return states of submachine ai , and qi is its entry 
state. 
 Each production p in set P has the general form 

(γ g , e , s α) : → (γ g' , e' , s' α) 
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where the left 3-tuple represents the current situation of M, and the right one denotes its 
situation after applying production p: γ and g' are the contents of the top of the stack, e 
and e' are states, s and s' are atoms form set S. Meta-symbols γ and a denote respectively 
parts of the stack and of the input string that do not affect the application of the 
production. 
 Particular cases of the above general form are relevant: 
• when e and e' belong to the same submachine, production p is said to represent an 

internal transition of that submachine. In this case γ and g' must be empty. 
• when γ is not empty, g' , s and s' have to be empty, and e' must be an entry state of 

some submachine. In this case, γ must represent a return state to which control is to 
be passed when the operation of the called submachine is over. In this case, 
production p denotes an empty transition that implements a submachine call. 

• when g' is not empty, g, s and s' must be empty, and production p denotes an empty 
transition that provides a return to the calling submachine. State e' must be the return 
state previously pushed onto the stack when the current submachine was called. 

 By maintaining coherence between states and stack contents, one may obtain 
automata that use the stack strictly when it finds self-embedding constructions in the 
input string. 
 When a string is submitted to such an automaton to be accepted, the automaton 
must be first set to its initial situation (empty stack, initial state, full input string). 
 Next, a sequence of internal transitions are performed, consuming atoms from the 
input string. 
 Eventually, a call to some submachine occurs, control is passed to it, then, after 
its operation, a return state is reached with no possibility of further internal transitions, 
and the stack is popped allowing a proper return to the calling submachine. 
 This procedure is repeated while needed until a final situation of the automaton is 
reached (empty stack, some final state, input string exhausted). 
 The language accepted by such a device is the set of all strings that lead the 
automaton to any final situation. 
 The equivalence between structured pushdown automata and the traditional 
formulation for pushdown automata may be easily demonstrated by showing how to build 
a structured pushdown automaton that simulate a given standard one, and vice-versa. 
 
 
3. Adaptive Automata 
 
 This section describes the ideas behind the formal structure of adaptive automata, 
by showing first the intuition of its operation, and then stating more rigorously some 
relations among its components. 
 An adaptive automaton M consists of the following components: 
• ω - input string to be accepted by the device 
• E - state machine implementing M at the start of its operation 
• E - state machine implementing M just after accepting w (m>0) 
• E - state machine implementing M just after executing i adaptive transitions (0<i<n) 

w = a a ... a 
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by M may be macroscopically stated as the recognition of a sequence of substrings a w 
by the corresponding state machines E j (0<j<m). 
 In other words, M describes a recognition path 

<E , a > → <E , a > → ... → <E , a > 
where each element <E  , a > represents the recognition of the input substring a by the 
corresponding state machine E . 

j

j

 Let's refine the description by studying in more detail the role each of the state 
machines E plays while consuming its corresponding input string a . 
 Let w = w; Let w be the portion of w initially given as input to state machine E, 
either at the beginning of the process or immediately after an execution of any adaptive 
transition by state machine E. 
 Let a be the prefix of w to be effectively consumed by E the recognition of w by 
M may be considered as a process executing the following sequence of steps: 
• E receives as input the string w =a ß  
• E consumes the prefix a of w 
• At this point, either w is exhausted (in this case, ß =e and M finishes its operation), or 

E executes an adaptive transition, evolving to E , and then activating it from an 
adequate state with w = ß as its input string 

 An adaptive transition P is described by a quadruple 
 P = ( t , A , u , B ) 

where t and u denote the configurations that M assumes before and after the application 
of P , respectively. 
 A and B represent adaptive actions to be performed just before and after M 
changes its configuration to u , respectively (0<j<n). Adaptive actions are implemented 
as calls to adaptive functions, defined below 
 An adaptive function may be defined as a 9-tuple of the form: 

( F , P , V , G , C , E , I , A , B )  
where: 
• F is the adaptive function's name 
• P is the list (r , r , ...) of its formal parameters 
• V is the set of identifiers of its variables 
• G is the set of identifiers of its generators 
• C is a set of production patterns to be searched and inspected 
• E is a set of production patterns to be searched and removed 
• I is a set of production patterns to be inserted  
• A is an adaptive action to be performed before F is executed 
• B is an adaptive action to be performed after F is executed An adaptive action 

represents a call to an adaptive function, and it is described by an ordered pair (F, P), 
where 

• F is the adaptive function's name 
• P is the sequence of arguments (p , p , ...) to be passed to F 
 The parameter-passing mechanism automatically assigns to each formal 
parameter r the current value associated to the positionally correspondent argument p 
when F is called. 
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 All parameters are write-once (at parameter-passing time), then read-only, and no 
output parameters are allowed. 
 In order to state how an adaptive automaton defines a language, some definitions 
are needed. 
 Define a configuration t of the adaptive automaton at instant k to be the quadruple 
(E , γ , q , w ), where 
• E is the state machine that implements M at instant k 
• γ is the contents of the stack at instant k 
• q is the current state of E at instant k 
• w is the input string to be processed by E at instant k 
 For k=0, we have the initial configuration of M, with γ =Z (empty stack), q the 
initial state of M, E the initial state machine implementing M, and w =w its full input 
string 
 Define also a final configuration t = (E , γ , q , w ) where 
• E is the state machine that implements M when w is exhausted  
• γ = Z denotes an empty stack at that instant 
• q is one of E 's final states if and only if w is a sentence 
• w = e represents that w has been entirely consumed by M 
 M evoves from a configuration t to the next one t each time it executes one of its 
transitions. 
 Transitions of an adaptive automaton may be grouped in two categories: normal 
transitions, which are similar to the transitions of a finite-state or a pushdown automaton, 
and adaptive transitions, which are able to implement the dynamic behavior of the 
adaptive automaton by changing its topology. 
 One says that an adaptive automaton M defines a language L(M) in the following 
way: 
 Let  w = a a ... a , a e Σ , i=1, ..., m, and let <E , a >→<E , a >→...→<E , a > be its 
recognition path, as defined above. 
 The configurations assumed by M at the start and just after the end of each step 
on its recognition path are, respectively: 

t = (E , Z , q , w)  
and 

t' = t = (E , γ , q , w ) 
for (E , a ) ; 

 t = (E , γ , q , w )  
and 

 t'= t = (E , γ , q , w )  
 for (E , a ) , 0<k<n; 

 t = (E , γ , q , w )  
and 

t'= t = (E , Z , q , e)  
for (E , a ). 
 Assuming that E reaches q , a final state of M, after exhausting its input string a , 
then w will be a sentence of the language described by M, and so we can define L(M) as 
being the set of all such strings: 
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L (M) ={ w = e Σ ¦ t→t→...→t }  
 
 
4. Notation 
 
 The following algebraic notation for specifying adaptive automata extends that 
chosen for structured pushdown automata by including adaptive actions, used to specify 
adaptive transitions. 
 Each of the transitions forming the adaptive automaton is denoted by a production 
of the form: 
(γ g , e , s α : A ,→(γ g' , e' , s' α , B 
which may be abbreviated to 
 ( e , s ) : A ,→e' , B  
whenever γ = g' = s' = e , the empty string. 
 In this notation, γ and a are meta-symbols denoting respectively the contents of 
the stack and the part of the input string not yet considered by the automaton, both 
irrelevant to the application of the transition. 
 The current state of the transition is denoted by e , and its next state, by e' . The 
explicit top of the pushdown store is denoted by γ and g' , before and after the transition, 
respectively. These four symbols are optional, and, when omitted, they correspond to the 
empty string. 
 A and B are optional, and correspond to lists of calls to adaptive functions, to be 
performed respectively before and after the change of state determined by the production, 
and assume the general form 
 { v , v , ... , v }  
where each v represents a call to some adaptive function F . 
 Abbreviations are allowed in some particular cases: null actions, denoted by {}, 
may simply be omitted, and singletons of the form { v } may be written v , by dropping 
the brackets. 
 Calls to an n -parameter adaptive function F assume the form 
 F (t , t , ... , t ) 
where t are arguments that may assume any coherent value within the function's body. 
 A function declaration of F with n parameters q consists of a header 
 F (q , q , ... , q ) = 
and a body of the form 
 { declaration of names (optional) : 
 declaration of actions (optional) } 
where  
declaration of names is a list of names chosen to represent objects in the scope of the 
function's body, 
 and  
declaration of actions is a list of elementary adaptive actions, preceded and followed 
(optionally) by calls to adaptive functions. 
 Each declaration of names assumes the following form: 
 v , v , ... , v , g * , g * , ... , g *  
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where names followed by an asterisk denote generators, and the remaining names denote 
variables. 
 Values are assigned only once to variables by elementary adaptive inspection- 
and elimination-type actions (explained below), then those objects become read-only. 
 Generators receive unique values also once at the start of function execution and 
remain read-only until its exit. 
 Parameters are also assigned values by the parameter-passing scheme before 
executing the function. Each parameter assumes the current value of the positionally 
corresponding argument in the function call, remaining unchanged thereafter. 
 Declaration of actions is a list (eventually empty) of elementary adaptive actions, 
preceded and followed optionally by a call to some adaptive function (named initial and 
final adaptive action, respectively). 
 Initial and final adaptive actions correspond to adaptive actions designed to be 
applied just before and after the execution of the specified list of elementary adaptive 
actions. 
 Initial adaptive actions are executed just after parameter are passed to the 
function, and just before its execution is started, being allowed to inspect and use formal 
parameter values, but having no access to variables and generators, which are still 
undefined. 
 Final adaptive actions, which are executed just before exiting the function, may 
read and use values associated to any of its parameters, variables and generators. 
 Elementary adaptive actions assume the general form. 
 prefix [ production pattern ] 
where  
prefix chooses the type of elementary adaptive action to be performed: 
 "?" (inspection action),  
"-" (elimination action) and 
 "+" (insertion action), 
 while  
production pattern represents a parameterized production to which actions are to be 
applied. 
 Inspection-type elementary adaptive actions refer to adaptive production forms 
having the same format of adaptive productions, except for elements to be inspected, that 
are replaced by variable names. 
 These variables must be unique, being filled by the inspection mechanism with 
the current value of the corresponding inspected unknown elements, becoming read-only 
thereafter. 
 A production pattern assumes one of the already known forms 
(γ g , e , s α : A ,→(γ g' , e' , s' α , B 
or 
 ( e , s ) : A ,→e' , B  
where g , e , s , g' , e', s' , as well as names and arguments of adaptive functions A and B, 
may be either constants or variables not used elsewhere. 
 An inspection mechanism searches the set of adaptive productions of the current 
instance of the adaptive automaton for any actual production whose components match 
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the production pattern's corresponding constants, and fills the variables with the current 
values of the corresponding production's elements. 
 If no such a production is found in the current instance of the adaptive automaton, 
the values assumed by variables associated to unknown elements remain undefined, and 
these variables will not be written any more. 
 Elimination-type elementary adaptive actions also reference adaptive production 
forms, and their initial operation is similar to that of inspection-type ones: the production 
pattern must be fully defined at the instant the elimination-type action is executed, 
otherwise it will be ignored, and matching productions will be eliminated from the set of 
adaptive productions. 
 Insertion-type elementary adaptive actions operate in the opposite way: the 
production pattern must be fully defined at the instant insertion-type actions take place, 
otherwise it will have no effect, and a production matching the production pattern will be 
included in the set of adaptive productions 
 The proposed notation provides abbreviations to denote, by means of universal 
quantifiers, sets of similar adaptive actions whose elements differ only in one of its basic 
component values. Set notation is used properly to implement these abbreviations: 
{ list of actions A local variable e set } 
where  
list of actions refers to any set of elementary adaptive actions referencing a local variable, 
which assume successively the values of the elements in the set, so building the desired 
actions to be performed. 
 Note that each instance of the list of actions builds a corresponding set of actions 
by successively replacing, by consistent substitution, all occurrences of the local variable 
by each of the elements in the chosen set. 
 Local variables have their scope limited to such abbreviations of sets. The 
function must not declare them as variables or generators, but can use them locally when 
defining other sets, provided the scopes of those definitions are disjoint. 
 
 
5. Operation 
 
 Alternatively to what has been stated before, the operation of an adaptive 
automaton may be described in terms of the transitions defined by its set of adaptive 
productions. 
 First, the automaton must be set to an initial situation 
 ( Z , e , a ) 
meaning that the stack is empty, the automaton is at its initial state and the whole input 
string is ready to be processed. 
 Being the adaptive automaton in its current situation 
 ( γ p , e , s a )  
set P is searched for some production that matches that situation. 
 In the case only one such a production exists, the transition it represents will be 
deterministically executed. 
 If two or more productions match the current situation, a non-deterministic 
transition will take place by executing in parallel all corresponding transitions. 
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 If no productions consuming some input atom match the current situation, a 
similar trial will be made for matching empty transitions. 
 If neither kind of productions is found that allow a transition to be executed, then 
the input string a will be rejected, otherwise another transition will be executed, and so 
forth, until a final situation is reached: 
 ( Z , e , e ) 
where the automaton exhibits an empty stack, the current state is one of its final states, 
and its input string has been exhausted. 
 The language defined by an adaptive automaton is the set of all input strings that 
lead it to some final situation. 
 In order to complete the definition of adaptive automata, the way adaptive 
productions are executed must be described. 
 Let 
 ( γ p , e , s a ) : A ,→( γ p' , e' , s' a ) , B 
be a general form of some matching production to be applied to current situation of an 
adaptive automaton. 
 If A is present, it will be executed first. As a consequence, the current production 
may eventually be excluded from the set of productions defining the adaptive automaton. 
 In such a case the application of that production will be aborted, and a next 
production to be applied to the current situation will be searched for. 
 If a change is specified to the contents of the stack, an eventually explicit p will 
be first popped from it, and then p'_, if explicitly present, will be pushed onto the stack. 
 If a change is specified to the contents of the input string, it will be treated as a 
stack: an eventually explicit s will be popped, by pointing the input cursor to the symbol 
just to its right, and an eventually explicit s' will be pushed onto the resulting input stack, 
to the left of the remaining input string, at the current cursor position. 
 Next, the automaton leaves state e and goes to state e', and if some adaptive action 
B is present, it will finally be executed. 
 
 
6. Example 
 
 A simple example is given below for illustrating the use of the above notation for 
specifying a context-sensitive language by means of an adaptive automaton. 
 The sentences of the language chosen for this example are simple sequences of 
five elements 
• a left curl bracket ( { ) 
• a list of identifiers, separated by commas 
• a colon ( : ) 
• a list of assignment statements, separated by semicolons 
• a right curl bracket ( } ) 
 Each identifier is a string of letters and digits, initiated by a letter. Like 
FORTRAN identifiers, those started by I, J, K, L, M or N are to be used as integer 
variables. 
 Each assignment statement is a sequence of three elements 
• a left side, consisting of a single identifier previously declared in the list of identifiers  
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• an assignment symbol ( = ) 
• a right side, consisting of a simple expression combining integer constants and 

declared identifiers of the same type as the one found in the left side 
 A full formal definition of the syntax for the above language may be described by 
means of an adaptive automaton as follows. 
 The adaptive automaton M will be initially stated as a set of three submachines L, 
S and A: 
• a lexical analyzer L, responsible by the extraction of basic elements of the language, 

such as delimeters, reserved words, identifiers, punctuation symbols and integer 
constants 

• a non-recursive submachine S, for defining the syntactic structure of a whole 
sentence  

• a self-recursive submachine A, for defining the syntax of simple arithmetic 
expressions, used in assignment statements 

 Let ASCII, LETTER and DIGIT represent the sets of ASCII symbols, roman 
uppercase letters and decimal digits, respectively. 
 For s e ASCII, let Ds represent a unique token associated to the character s 
denotes, and by which submachines S and A, implementing the syntax analyzer, will 
recognize it. 
 Submachine→is automatically called each time the syntax analyzer needs an 
atom, and plays the role of a lexical analyzer. 
 L is given by the following set of productions (L1 is its initial state, and L6, L7, 
L8, L9 are final states that return to the calling submachine, respectively, id , id-int , id 
and id-real as the next token to be extracted from the input string): 
• Ignoring blanks:→stays in state L1, consuming all blank characters found in the input 

string: ( γ , L1 , " " a ) :→( γ , L1 , a ) 
• Extracting special characters: in state L1, submachine→extracts the next input 

character, s, and converts it to the corresponding token Ds, returning to the calling 
submachine after inserting Ds at the start of the remaining input string: 

 { ( γ p , L1 , s a ) :→( γ , p , Ds a )  
A s e ASCII - ( DIGIT u LETTER u { " " } ) } 
• Extracting integer numerals: When a digit is extracted in state L1,→consumes all 

digits following it until a non-digit is found, which is not consumed. A token num is 
then returned to the calling submachine as the next token to be read in 

 { ( γ , L1 , s a ) :→( γ , L2 , a ) A s e DIGIT } 
 { ( γ , L2 , s a ) :→( γ , L2 , a ) A s e DIGIT } 
 { ( γ , L2 , s a ) :→( γ , L3 , s a ) A s e ASCII - DIGIT } 
 ( γ p , L3 , a ) :→( γ , p , num a )  
• Extracting identifiers: First, when a letter initiating an identifier of integer 
variables ( I, J, K, L, M or N ) is found at state L1, the remaining sequence of letters and 
decimal digits is extracted at state L4, otherwise at state L5. L6 and L8 are final states, 
reached whenever a new identifier is declared, and both return token id to the syntax 
analyzer. L7 and L9 correspond to final states, reached only when previously found 
integer or real identifiers are found, respectively. Adaptive action B is activated 
whenever a symbol is found that had never occurred before in the same position, and it 
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acts by eliminating the current production and inserting a new similar one with a different 
destination state, specifically created for recording the new path. In order to preserve the 
syntactical meaning of the automaton, from the newly added state an insertion is done of 
a set of productions equivalent to those emerging from the former destination state. From 
states L4 and L5 transitions emerge which activate adequate calls to adaptive action D, 
changing the token id returned by submachine→to id-int or id-real, respectively 
 
 { ( γ , L1 , s a ) : B( L1 , s , L4 , L6 , L7 )→( γ , L4 , a ) 
A s e { I, J, K, L, M, N } } 
 ( γ , L4 , a ) :→( γ , L6 , a ) , D( L4 , L6 , L7 ) 
 ( γ p , L6 , a ) :→( γ , p , id a ) 
 ( γ p , L7 , a ) :→( γ , p , id-int a )  
 { ( γ , L1 , s a ) : B( L1 , s , L5 , L8 , L9 )→( γ , L5 , a ) 
A s e LETTER - { I, J, K, L, M, N } } 
 ( γ , L5 , a ) :→( γ , L8 , a ) , D( L5 , L8 , L9 ) 
 ( γ p , L8 , a ) :→( γ , p , id a ) 
 ( γ p , L9 , a ) :→( γ , p , id-real a ) 
 Adaptive functions B and D are declared as: 
 
B( x , s , y , z , t ) = { j* : 
 + [ ( γ , x , s a ) :→( γ , j , a ) ] 
 { + [ ( γ , j , q a ) : B( j , q , y , z , t )→( γ , y , a ) ] 
A q e DIGIT u LETTER } 
 { + [ ( γ , j , q a ) :→( γ , z , q a ) , D( j , z , t ) ] 
A q e ASCII - ( DIGIT u LETTER ) } 
 - [ ( γ , x , s a ) : B( x , s , y , z , t )→( γ , y , a ) ] } 
 
D( j , z , t ) = { : 
 { - [ ( γ , j , q a ) :→( γ , z , q a ) , D( j , z , t ) ] 
A q e ASCII - ( DIGIT u LETTER ) } 
 { + [ ( γ , j , q a ) :→( γ , t , q a ) , D( j , z , t ) ] 
A q e ASCII - ( DIGIT u LETTER ) } } 
 
 Much simpler than L, submachine S is the initial submachine of the starting 
automaton and is given by the following productions, where adaptive action C inhibits 
the lexical analyzer to incorporate new identifiers as typed variables after declaration 
segment's end, while A configures submachine A to reject inconsistent variable types. 
The way this submachine works has no tricks. S8 is the final state of the adaptive 
automaton, identified by a trap in the last production: 
( γ , S1 , D{ a ) :→( γ , S2 , a )  
( γ , S2 , D: a ) :→( γ , S4 , a )  
( γ , S2 , id a ) :→( γ , S3 , a )  
( γ , S3 , D, a ) :→( γ , S2 , a )  
( γ , S3 , D: a ) :→( γ , S4 , a ) , C () 
( γ , S4 , D} a ) :→( γ , S8 , a )  
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( γ , S4 , id-int a ) :→( γ , S5 , a ) , A( id-int ) 
( γ , S4 , id-real a ) :→( γ , S5 , a ) , A( id-real ) 
( γ , S5 , D= a ) :→( γ , S6 , a )  
( γ , S6 , expr a ) :→( γ , S7 , a )  
( γ , S7 , D; a ) :→( γ , S4 , a )  
( γ , S7 , D} a ) :→( γ , S8 , a )  
( γ , S8 , a ) :→( γ , S8 , a ) 
 
 Adaptive functions A and C are defined below: 
 
A( s ) = { : 
 - [ ( γ , A1 , id-int a ) :→( γ , A2 , a ) ] 
 - [ ( γ , A1 , id-real a ) :→( γ , A2 , a ) ] 
 + [ ( γ , A1 , s a ) :→( γ , A2 , a ) ] } 
 
C () = { : 
 - [ ( γ , L4 , a ) :→( γ , L6 , a ) , D( L4 , L6 , L7 ) ] 
 - [ ( γ , L5 , a ) :→( γ , L8 , a ) , D( L5 , L8 , L9 ) ] 
 + [ ( γ , L4 , a ) :→( γ , L6 , a ) ] 
 + [ ( γ , L5 , a ) :→( γ , L8 , a ) ] } 
 
 Finally, define a simple arithmetic expression in the classical way, by means of 
self-recursive submachine A, through the followinγ set of productions. 
 Although A seems to be context-free, a production from A1 to A2, consuming id-int or 
id-real, is not shown in the set below, but is added and removed dinamically by adaptive 
function A, executed during the operation of S 
 
 ( γ , A1 , num a ) :→( γ , A2 , a ) 
 ( γ , A1 , D( a ) :→( γ , A3 , a ) 
 ( γ , A2 , D+ a ) :→( γ , A1 , a ) 
 ( γ , A2 , D- a ) :→( γ , A1 , a ) 
 ( γ , A2 , D* a ) :→( γ , A1 , a ) 
 ( γ , A2 , D/ a ) :→( γ , A1 , a ) 
 ( γ , A3 , expr a ) :→( γ , A4 , a ) 
 ( γ , A4 , D) a ) :→( γ , A2 , a ) 
 { ( γ , A2 , q a ) :→( γ , A5 , q a ) 
A q m { D+ , D- , D* , D/ } } 
 ( γ p , A5 , a ) :→( γ , p , expr a ) 
 
 
7. Applications 
 
 One of the most important applications of adaptive automata is, obviously, in 
activities related to the implementation of computer languages, by providing an efficient 
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way to syntactical handling of context-dependent features such as: name handling, 
reserved word extraction, nested scoping, object typing, type checking, parametric macro 
definition and expansion, and other syntactical extension mechanisms. 
 All these applications may be implemented without any help of semantic actions. 
 Instead, they may be done entirely by properly using adaptive transitions where needed. 
 In addition, some additional activities, usually implemented by other means, such 
as static semantics in a conventional language processor, may also be included in the 
syntactical handling provided by adaptive automata or by transducers based on adaptive 
automata: canonical code generation, syntax error handling, some kinds of code 
optimizations based on pattern-matching or pattern-substitution mechanisms, and even 
the replacement of storage-handling procedures by syntactical tools, implemented by 
adaptive transitions within an adaptive automaton. 
 Naturally, when implementing non-conventional compilers, such as those 
intended to be used in parallel or distributed environments, one may explore the powerful 
features of adaptive automata to implement devices that feature pattern-recognition 
mechanisms, and then use them to achieve some goals, such as identifying segments of 
the code that might be executed in parallel, recognizing mutual dependence among parts 
of the code, locating segments of the code suitable to be improved by using adequate 
machine-dependent instructions, and so on. 
 Many other fields of interest may use adaptive automata instead of conventional 
mechanisms to solve specific problems: digital communications (protocols, error 
handling), software engineering (formal specifications, man-machine interfaces, 
automation of design and implementation activities and tools), systems software tools 
(generators of systems programs from formal specifications), meta-programming, 
artificial intelligence (context-sensitive recognizing mechanisms, natural language 
processing, pattern recognition, learning devices, expert systems), computer-aided 
instruction, etc. 
 Because of its easy-to-learn general structure from which traditional recognition 
devices may be directly derived by imposing trivial restrictions to the former general 
model, and because of the existence of intuitive methods to obtain a good implementation 
from the formal specification it represents, adaptive automata are excellent to rapidly 
introducing formal language concepts and implementation devices to people not 
previously exposed to a full theoretical course in formal languages and automata. 
 
 
8. Final remarks 
 
 Adaptive automata are somewhat general theoretical devices that allow one to 
exploit their special features to represent the behavior of the language being formally 
specified without loosing performance for simple languages. 
 That is particularly true because structured pushdown automata may be 
implemented from adaptive automata simply by using no adaptive transitions in its 
formulation, and finite state automata may be specified as a particular case of structured 
pushdown automata in which there is only one non-recursive submachine that does never 
use the adaptive automaton's stack. 
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 So, once the design of an adaptive automaton is completed, it may be properly 
implemented in the cheapest way by choosing the simpler model that has power enough 
to fulfill the needs of the language being implemented. 
 It can be easily shown that one may use the proposed formal model for building 
extremely efficient context-free recognizers which operate deterministically in time O(n), 
as informally sketched below. 
 If the automaton is built from a set of submachines such that each submachine is 
deterministic and correspond to an essential non-terminal of a context-free grammar (the 
root of the grammar plus a set of independent self-recursive non-terminals), the stack will 
be modified strictly at the occurrence of self-embedded constructions. 
 Whenever such a syntactic form is identified, a stack symbol is pushed onto the 
stack at the time a submachine called, to be later popped out at the time a return is done 
to its caller. 
 All the rest of the automaton's operation is done through internal transitions, 
which consume one atom each. 
 As the total cost of recognizing a string with length n will depend linearly on the 
number of internal transitions, and on the number of submachine call-return transition 
pairs, which is also linearly limited by the length n of the input string, the resulting cost 
function will also be proportional to n. 
 This is of course an excellent result, and, as the operation of adaptive automata 
may be regarded as a sequence of operations of structured pushdown automata, one can 
also expect similar performance from adaptive automata, provided that there be an upper 
limit to the time taken by adaptive transitions to operate. 
 Although it does not apply in general, the last hypothesis does hold in several 
useful and somewhat complex applications, making it attractive to employ adaptive 
automata in many interesting situations. 
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