
SYNCHRONIZED STATECHARTS FOR REACTIVE SYSTEMS

JOÃO JOSÉ NETO, JORGE RADY DE ALMEIDA JÚNIOR, JOSÉ MARIA NOVAES DOS SANTOS
Escola Politécnica da Universidade de São Paulo

Departamento de Engenharia de Computação e Sistemas Digitais
e-mails: jjneto@pcs.usp.br , jrady@pcs.usp.br , novaesjm@usp.br

ABSTRACT

When modelling reactive systems, one has to adequately choose tools and notations that are consistent and appropriate
to comfortably express all relevant features of a system. There are many ways and notations to describe the structure and
behavior of systems. Graphical notations are uaually attracting for being intuitive and readable. Statecharts and Petri Nets
constitute such a kind of notation, although being different in their conceptual level. The present paper proposes a hybrid
notation based on these two ones, to be used in a tool for describing reactive systems, and discusses some aspects of such
class of notations. Hybrid approaches let their users to exploit the best features from each composing notation, and may lead
to better and more readable representations, provided their users are well-disciplined. A computer program supporting that
notation is also reported, and a simplified real-world example is used to illustrate the use of this tool.

Keywords: statecharts, reactive systems, synchronisation, modelling

INTRODUCTION

Statecharts, as introduced by Harel [1], make an
excellent graphical notation for describing reactive
systems. Petri Nets [2] are also used as a good tool for
analysis and design of synchronised processes. While
statecharts, as a higher-level notation, tend to hide low-
level temporal details of the described phenomena, with
Petri Nets the representation of functional aspects of the
process is not immediate.

In many situations, it would be adequate to use some
well-known notation in order to represent a process, in its
structural and functional aspects, without leaving apart the
details of its temporal aspects. In such a case, hybrid
notations seem to be adequate.

Many variants exist both for Statecharts and Petri
Nets. In the implementation mentioned in this work, only
a restricted kind of Petri Nets is considered for working
along with an adaptive variant of Harel’s Statecharts.

Adaptive Statecharts [3] are extensions that
increments the features of traditional Statecharts with the
so-called adaptive actions. Adaptive actions are driven by
special transitions of the Statechart, and they allow the
current Statechart to modify itself, by altering its topology
and, consequently, changing its functionality, as a
response to external stimuli.

Although the main purpose of the present paper is
not studying adaptive aspects of the Statecharts, the
adaptive feature is mentioned here because it has been

implemented this way in the tool we have developed to
support this hybrid notation [4].

SYNCHRONISED STATECHARTS

In this paper we report a proposal of a hybrid model
in which we integrate Petri Nets to Adaptive Statecharts.
With such a compound device it has become easier to use
both notations in one only environment, allowing one at
the same time to explicitly take care of low-level
synchronising aspects of the reactive system under
appreciation (by means of Petri-Nets connecting
Statecharts) while describing all other elements of that
system at a higher level (by means of their Statechart
descriptions where eventual dynamically-changing
behaviour aspects may be expressed through adaptive
actions).

Using such kind of hybrid modelling devices show
both advantages and disadvantages. The main
disadvantages they bring refer to:

a) In order to fully explore the features of any hybrid
notation, users need to have good familiarity with more
than one notation.

b) The non-uniformity in the level of detail each notation
demands for. In the present case, there is a level gap
between high-level statecharts and low-level Petri Nets.

c) Building tools that give support to hybrid models
demand for the implementation of all models the hybrid
one is made up from, so inheriting complexity from all of
them.

d) As long as each already-existent notation is self-
contained in many aspects, it is always possible to fully
describe the system being modelled without importing any
extra feature from other notations

e) By often providing alternative ways to express the
same phenomenon, no enforcing of uniformity is imposed
by the notation, demanding from their users a higher
degree of discipline than in the case of non-hybrid
notations in order to achieve readable and expressive
descriptions.

The main advantages of using hybrid modelling lie
on the following:

a) Hybrid notations allow one to employ the best features
of each composing notation, so giving their users a larger
repertoire of tools, and allowing them to choose the most
expressive ones

b) Petri Nets are particularly suitable for explicitly
representing temporal aspects of a system, complementing
the adequacy of Statecharts to represent hierarchical,
structural and logical aspects of the system.

c) Already-made Statecharts may be used almost directly
in the hybrid model without needing any internal
modification, so, in general, composing a number of
Statecharts with Petri Nets does not require opening them,
provided that proper interfaces have been adequately
established.

d) Petri Nets are devices that have been extensively
studied, for which many useful analysis results are
available from theory, both in the form of theorems and
algorithms.

e) By means of a hybrid model supporting tool, non-
familiar users may incrementally learn each component of
the hybrid model, as well as the whole hybrid model.

f) Users may choose among the tool’s features in order
to specialise it in favour of each particular problem’s
needs.

g) Such a tool may be used as a pedagogical device,
allowing their users to be hierarchically trained in
increasingly-difficult issues of the various theoretical and
practical aspects of the models and of the tool itself.

A WORKING ENVIRONMENT FOR
SYNCHRONISED STATECHARTS

STAD-S is a tool that has been developed with the
intent of providing an environment for experimenting and
testing synchronisation issues in reactive systems
described by models based on (adaptive) statecharts.

Adaptive Statecharts are extensions of Harel’s
statecharts that allow their users to attach, to selected
transitions, calls to potentially parametric adaptive
functions (adaptive actions).

At the time those optional adaptive transitions are
performed, the corresponding attached adaptive action
take place by applying editing operations to the adaptive
statechart itself.

Three basic kinds of elementary actions are allowed
in adaptive functions in order to express the specification
of the desired statechart modifications:

• inspection actions locate transitions in a statechart that
match a given template

• removal actions allow eliminating transitions matching
some template

• insertion actions allow adding bubbles and transitions
to the statechart

As we have mentioned before, the present paper will
not deal with the adaptive features of the notation, but we
refer to them here only for sake of completeness. For
further information on this subject see [5].

Systems whose data have been included in a STAD-
S-developed model are called projects, which may be
themselves hierarchically split into subprojects, in an
arbitrary depth of levels of detail. All data referring to
registered projects are hold in a database by STAD-S.

A graphical editor is available for users to specify
their statecharts, allowing bubbles and transitions to be
easily created and specified. At its creation time, a bubble
may be tagged as being expandable, allowing the creation
of arbitrarily hierarchical specifications.

Transitions from bubble to bubble are triggered by
either independent or dependent events. The former refer
to externally-generated events, which cause initial
transitions to occur, while the later ones represent events
generated internally to the currently active statechart, and
are responsible by the occurrence of intermediate
transitions.

In our tool, transitions driven by independent events
are represented in dashed lines, while those related to
dependent events are drawn with solid lines.

Bubbles are connected through directed links
(direction is represented by an arrow), made up by the
following elements:

• one driving event, which allows the transition to occur
provided that its associated condition holds. The event is
the only mandatory component of a link.

• one condition, under which the associated event can
activate its corresponding transition. This condition
indicates whether or not the bubble under study is
currently active. Conditions are optional components of
the links between bubbles. When omitted, the
corresponding transition activation will occur
unconditionally.

• a trigger, indicating which eventual other link is to be
activated as a response to the execution of the current
transition. This is also an optional element, and its
omission indicates that no other link is to be activated.

• an optional pair of numbers, indicating a delay and the
minimum value for the response time specified for the
transition.

• an optional adaptive action, represented by a call to an
adaptive function, which may modify the statechart in
order to change its behaviour if necessary.

STAD-S checks for consistencies whenever a
statechart is detailed one further level, and both
informations from the preceding and the succeeding levels
are verified. Inputs and outputs to each bubble are tested
so that in both neighbour hierarchical levels all of these
elements must be also present, so enforcing adequate
connectivity.

Inputting adaptive functions to STAD-S is done in a
very similar way, by using the same editor. Whenever an
adaptive function is called by some link, it is instantiated
as an adaptive action associated to that link, for being
executed whenever the corresponding transition occurs.

Adaptive actions are made up from basic editing
operations to the statechart. They are used for specifying
the insertion of new bubbles and links, and the deletion of
existing links.

Sources and destinations of links, bubble names,
names of events associated to links, and the identification
of a link to be excluded are the elements allowed as
parameters by an adaptive function.

At the time an adaptive function call is attached to a
link, it instantiates an adaptive action, which will, at its
run time, extract values from the arguments, assigning
them to their corresponding formal parameters.

STAD-S allows one to simulate the execution of a
given statechart. Once completely specified, an (adaptive)
statechart may be simulated, step-by-step or

automatically, by the tool, provided the user properly
inserts the needed information about independent events.

By convention, its graphical user interface indicate
to the user all currently active bubbles by redrawing them
with a thicker contour. The same is done to the lines
representing currently working links. In automatic
simulation mode, this convention give the user a way to
follow the activity of the system through an animated
picture of the simulation process.

All already mentioned features have been
implemented in a former tool, named STAD. STAD-S
was built as an extension to STAD, allowing the
specification of compound systems built up from a set of
(adaptive) statecharts, linked through Restricted Petri Net
connections.

In the current implementation of STAD-S, severe
restrictions are imposed to the shape of linking nets, in
order to keep it simple to simulate phenomena related to
the synchronisation of the statecharts.

An elementary Restricted Petri Net connection is
limited to have m inputs leading to m corresponding
places through simple transitions, and n outputs coming
out of transitions fed by unique places. The m input
statechart bubbles reach a single transition, from which
the n remaining bubbles are directly reached (see fig. 1).
All those bubbles are mirrowed by STAD-S as Petri-Net
places.

Fig. 1 - General shape of a Restricted Petri Net used to
interconnect statecharts

However, the imposed restrictions do not
conceptually restrict the kind of synchronisation to be
used, because it is always possible to artificially connect
arbitrary basic Restricted Petri Nets through dummy
statecharts, acting as mere places, until an equivalent form
of the desired Petri Net shape is obtained.

As we mentioned before, using this hybrid notation
allow defining systems which are composed from already
available (adaptive) statecharts, with only minor changes.

Different components are independently represented, and
eventual interactions and temporal dependencies among
them are explicitly denoted by means of Restricted Petri
Net connections.

STAD-S program consists of two large functional
modules: one is used to specify (adaptive) statecharts,
performing graphical edition of statecharts in a fashion
similar to Harel’s definition, and the second one
complements the hybrid notation by allowing the input of
connections among already specified statecharts through
Restricted Petri Nets.

In these connections, each Restricted Petri Net is
identified by:

• a unique name, used for identification purposes

• a list of the input statechart bubbles to be connected
through the Restricted Petri Net

• a list of the output statechart bubbles to be activated in
response to a token generated as output by the Restricted
Petri Net

Restricted Petri Nets reflect the kind of connections
allowed in the present implementation of STAD-S, but a
future version is planned to accept and simulate more
general shapes of Petri Nets, and to run a set of
consistency tests on the models.

ILLUSTRATING EXAMPLE

The following illustrating example uses the
proposed hybrid notation to describe a system composed
by rather independent subsystems, each one represented
by a non-adaptive statechart, interconnected by some kind
of protocol, whose synchronisation is explicitly
represented by Restricted Petri Nets, interconnecting
selected bubbles inside the statecharts.

This example refers to a system in which a diversity
of customers ask several servers for different services.
When a service is ordered, the system checks for the
rights of the asking customer, and rejects requests not
allowed for that customer. Otherwise, an adequate server
is requested to provide the service. Anyway, all involved
modules are notified.

Although being a very short example, it represents a
somewhat complete case for study, since it deals with
closed feedback systems, sketching a nice working
solution to a wide class of usual practical problems, in
fields such as insurance, hotel and ticket reservations,
schools, services, renting of goods, process control and
supervision and many others.

In the example below, we show one only level of
detail for the statecharts, in order to identify the set of
transitions affected by synchronisation, so most of their
logic is omitted for it is irrelevant to our discussion.

Additionally, we do not replace by Restricted Petri
Nets all those transitions from the set of statecharts.
Although that would apply to all synchronising transitions
in the set of statecharts, we kept them all but one,
randomly chosen only to illustrate that this transformation
may be applied strictly over synchronising transitions that
are of interest.

In order to present a concrete practical case study we
instantiate our general example by applying it to represent
the simplified behaviour of a Health Insurance company.

In figure 2 a model is proposed, based on statecharts
only. Dashed lines have been superimposed to the figure
in order to show existing (implicit) communications
among statecharts. The system under study is made up by
four independent subsystems, each one represented by a
separate statechart: customer, company, plan and
resource, drawn following Harel’s conventions [1].

Statechart customer represents people who had
acquired some Health Plan from a company modelled by
statechart company. Statechart resource is a rough
representation of all hospitals, laboratories, physicians and
other elements available. Statechart plan represents the
health plan we are talking about.

When a customer requests some service (for
example, a clinical test), the company controlling his
insurance checks whether or not the requested service is
covered by the given plan. In affirmative case, it enables
the request, otherwise the request is rejected.

Service
 in

execution

requested
service

CUSTOMER

company
consults
resource

rest

COMPANY

check
consumer

rights

PLAN

wait

allocates
resources

and executes
service

RESOURCE

requested
service

request for a
service/check

plan
 plan not

OK /
reject

plan OK/
check

resource

 enable

rest

check plan

not OK / plan not OK

OK / plan OK

rest

rest

customer
need /

request
for a

service
reject

enable

finished
service

end /
finished
service

check
resource

availability / enable

non-
availability

Fig. 2 – Illustrating example – health plan

The accomplishment of the requested service will be
obviously conditioned to the readiness of the
corresponding needed resources (in our case, proper
laboratory resources must be available to perform the
requested test).

Supposing that our only interest is about details on
the synchronisation issues related to the event finished

service, we will change the connections labelled with that
event in the two involved statecharts (customer and
resource) into an equivalent connection made up from
Restricted Petri Nets and a dummy connecting statechart.

Figure 3 illustrates the substitution of the transitions
with attached event finished service, communicating and
synchronising statecharts customer and resource. The
corresponding transitions are replaced by two Restricted
Petri Nets RPN1 and RPN2, and a dummy statechart has
been included to accommodate the notation accepted in
the present version of STAD-S.

Service
 in

execution

dummy
statechart

allocates
resources and

executes service

rest rest

CUSTOMER RESOURCE

end

end
finished
service

RPN1

RPN2

Fig. 3 - Equivalent Petri Net connection for event finished service

CONCLUSIONS

Hybrid notations are not a must, but they can ease
viewing and analysing directly some details that would be
harder to handled otherwise.

As we can see from the example above, in real
problems there are usually so many elements in the model
that it often very difficult even to locate in the set of
statecharts all elements we are interested in, especially
because these dependencies are not explicitly drown in the
graph.

By performing the transformation suggested in this
article, an equivalent graph is obtained, where all
synchronising features we want to study are explicitly
shown.

With the help of our tool, these elements may be
stimulated adequately and the results of their simulation
may be observed, giving the user further insights on their
synchronisation problems.

Obviously it is not wise to blindly apply this
transformation to all synchronising transitions, because
that would convert all statecharts into Petri Nets, so losing
the advantages of their higher-level expressiveness.

STAD-S has also adaptive features, not covered in
this paper, but useful when modelling systems with input-
driven dynamic behaviour or some kind of learning
capabilities.

Finally, STAD-S is a tool with high pedagogical
potential, that may be used in several situations as a
laboratory or as a teaching aid, through which many
issues may be taught and learned: reactive systems,
statecharts, Petri Nets, learning devices, synchronisation,

communication, simulation and many others, all very
important in computer science and engineering.

REFERENCES

[1] HAREL, D. Statecharts: a visual formalism for
complex systems. Science of Computer
Programming, v.8, n.3, p.231- 74, Aug. 1987b.

[2] PETERSON, J. L. Petri nets. Computer, v.9, n.3,
p.224-252, Sept. 1997.

[3] ALMEIDA JUNIOR, J. R. STAD - Uma
ferramenta para representação e simulação de
sistemas através de statecharts adaptativos, São
Paulo, 1995, 202p. Doctoral Thesis (in
Portuguese) - Escola Politécnica, Universidade de
São Paulo.

[4] SANTOS, J. M. N.. Um formalismo adaptativo
com mecanismo de sincronização para aplicações
concorrentes, São Paulo, 1997, 98p. Thesis (in
Portuguese) - Escola Politécnica, Universidade de
São Paulo.

[5] JOSÉ NETO, J. Adaptive automata for context-
sensitive languages. ACM Sigplan Notices, v.29,
n.9, p.115-24, Sept. 1994

	SYNCHRONIZED STATECHARTS FOR REACTIVE SYSTEMS
	JOÃO JOSÉ NETO, JORGE RADY DE ALMEIDA JÚNIOR, J�

	ABSTRACT
	INTRODUCTION
	SYNCHRONISED STATECHARTS
	A WORKING ENVIRONMENT FOR SYNCHRONISED STATECHARTS
	ILLUSTRATING EXAMPLE
	CONCLUSIONS
	REFERENCES

