
Proceedings of the IASTED International Conference
Applied Modelling and Simulation
September 1-3, 1999, Cairns, Australia

300-224 1

Modeling Adaptive Reactive Systems

João José Neto, Jorge Rady de Almeida Júnior
Escola Politécnica da Universidade de São Paulo

Departamento de Engenharia de Computação e Sistemas Digitais
e-mails: jjneto@pcs.usp.br , jrady@pcs.usp.br

Keywords: Adaptive Models, Adaptive Statecharts, Systems Modeling

Abstract

Reactive systems have been described by means of
several notations and formalisms, through which different
orthogonal aspects are captured: their internal state
behavior, their synchronization aspects and their
communication component. Classical formalisms are
intended in a large extent to capture static aspects of
systems behavior. However, for systems which change
dynamically in response to external stimuli, that approach
is not enough to represent all its features, because of the
lack of ability of classical models to easily describe
dynamic changes in the systems behavior.

In order to fulfill this requirement, an adequate
model for representing dynamically changing systems
should be based on some kind of formal device having the
feature of representing self-modifications. We call
adaptive such a class of formal devices, and the
technology they allow to implement. In the following
sections some adaptive devices are described as a
qualitative introduction to the modeling of adaptive
reactive systems.

As an illustration, a very simple reactive system with
adaptive properties is described by means of adaptive
statecharts: an interactive system for decompressing 2-D
packed sequences based on geometric shapes moving on a
plane allowing the user to disturb the exhibition of the
sequence by modifying shape locations during its
presentation.

In this paper we explore the concepts of adaptive
technologies applied to the modeling of reactive systems.
In particular, adaptive automata and adaptive statecharts
are considered. [1], [8]

Adaptive Automata

Adaptive automata derive from the conceptual
difference between context-free and context-sensitive
languages: in contest-sensitive languages, the occurrence
of some particular construct in some specified
environment may imply modifying the way related
constructs are to be interpreted throughout of the input,
and that may be obtained by modifying the behavior of
the acceptor for that language.

A very elegant and strictly syntactic way to modify
the interpretation of the input is to modify the syntax the

automaton is able to accept, so fitting the needs of the
new situation.

A straightforward method for modifying the syntax
accepted by an automaton is to change its topology
according to the desired syntax modifications.

Any changes to an automaton may be accomplished
through a set of elementary editing operations acting upon
its set of transitions: adding a new transition to the set,
selecting from the set of transitions a target transition that
fit some given predicate, and eliminating a selected
transition from the set.

Editing operations may be grouped, and the resulting
groups are named adaptive actions.

Adaptive automata are built from subjacent
pushdown automata simply by attaching adaptive actions
to their transitions. That enables them by applying
adaptive actions attached to their state transitions.

An editor and a simulator have been implemented for
adaptive automata, allowing them to be tested and
debugged in a friendly environment.[4]

Adaptive automata have been used as the starting
point to a number of other correlate developments, both in
their theoretical and practical issues, giving rise to
variants as Adaptive Statecharts and Synchronized
Adaptive Statecharts [8] (see below).

Adaptive automata have the power of a Turing
Machine but, in contrast to this classical formalism, it is
sufficiently attractive and effective for being used in an
easy way by implementers as a specification language,
because it behaves as a formal description meta-language
that allow the natural construction of practical and
efficient implementations.

By observing the operation of adaptive automata, a
single unusual feature may be indicated to be responsible
by most of their practical power, namely its input-driven
self-modifying capacity.

This adaptive paradigm is not exclusive to adaptive
automata, but it may be applied as well to several other
originally static formalisms, giving rise to a growing
family of powerful dynamically modifiable formal
models. Some other models in this class of devices have
been reported in the literature [2],[5],[6],[7]

300-224 2

Adaptive Statecharts

By attaching adaptive features to statecharts, the
resulting model was called the adaptive statechart.

Adaptive statecharts are based on a variant of
standard statecharts, and were designed to be used for
describing reactive systems.

Their main features include statecharts hierarchical
high-level graphical notation, allowing it to be employed
for analysis and design purposes.

Adaptive features added to the classical model
enable it to dynamically change its own behavior. The
resulting software is a powerful tool for describing
reactive systems with learning power.

This work originated also a visual tool for editing
and simulating adaptive statecharts, which was conceived
and developed as a part of a doctoral research [3].

Currently this tool is being fully reprogrammed in
order to improve its facilities and to make better its man-
machine interface for use by non-expert people.

Adaptive Statecharts have been employed in projects
on reliability and security analysis of transport systems,
like railways or metropolitan subway systems

Synchronized Adaptive Statecharts

Synchronized Adaptive Statecharts are hybrid
models that were created as extensions of adaptive
statecharts through the addition of explicit synchronizing
features to the model.

Although adaptive statecharts use the implicit
communicating and synchronizing features of classical
statecharts, synchronized adaptive statecharts allow
explicitly stated synchronization among statecharts
through connecting elements based on restricted-shaped
Petri Nets.

The resulting model allow factoring all useful
synchronizing aspects that seem to be relevant to the
analysis by extracting them from the statecharts and
migrating them into equivalent elements in the connecting
Petri Net elements.

So, all asynchronous phenomena not important to the
analysis may remain hidden as internal statechart
elements, and only those really needed for the current
study may be converted into Petri Net connections for
better monitoring purposes.

It is possible to derive the Petri Net connections
automatically from the original statecharts by selecting
the events that are to be observed through the connecting
elements, but no provision for that had been implemented
yet.

An extension to the previously mentioned tool for
adaptive statecharts has been implemented, allowing the

use of the tool to develop and debug synchronized
statecharts too. [8]

Motivation

Using adaptive automata or adaptive statecharts is
particularly adequate for expressing context-dependent
user-oriented applications with state-based internal
structure and learning abilities.

In order to implement any adaptive machine, one
may start from an initial non-adaptive device of the same
kind and attach to it rules for input-driven dynamic self-
modification.

For that purpose, it is needed some mechanism
allowing to inspect the contents of the system memory, as
well as its set of states and its input stream. Furthermore,
this device must be able to generate new rules updating
the system’s description.

Adaptive automata and adaptive statecharts may be
employed with that purpose. Although finite-state
automata, pushdown automata and standard statecharts
are unable to handle context-dependencies and self-
modification, they are indeed used as the underlying static
devices for adaptive automata and adaptive statecharts,
respectively.

Therefore, time, input and output memories and
system states are the basic elements adaptive automata
and adaptive statecharts are intended to handle.

The complexity of an application may be roughly
evaluated taking into account the number of its variables,
the number of structural levels in its architecture and the
freedom of choice of its configuration parameters.

Some typical applications for adaptive devices are in
the field of formal languages, process control, computer
art, robotics and artificial intelligence, including machine
learning, computer education, optimization, handicapped
people training, natural language processing, simulations
and games, children education, dynamic traffic control,
and many other intelligent or behavior-changing systems.

Using Adaptive Technology for Viewing Packed 2-D
Sequences

This example illustrates a 2-D viewer for packed
sequences of moving geometric shapes. We assume in this
paper that a compressor program is run previously for
building the packed form of the movie from the original
film, by considering in the packed form the minimum set
of frames that properly represent the movement of the set
of geometric shapes.

The compressing technique consists of representing
the original movie by a subset of its original frames
without loosing information. That is achieved by splitting
the original film into a sequence of takes. In each take,
each shape is allowed to move from an initial position to a
final one through a straight path, with constant speed.
With that restriction, any take may therefore be packed as

300-224 3

a pair of frames, stating the original and final positions of
the geometric shapes, and the time to elapse between
these two situations. Packing is further improved by
coding the shapes by specifying their types and attributes,
as in ordinary vector imaging.

In order to watch to a movie packed this way, one
should run some viewer capable to perform its
decompression. Such an operation is quite trivial,
consisting on extracting sequentially the pair of frames
that describe each take and reconstructing the
intermediate frames by interpolating the shapes along the
corresponding straight path from its initial position
towards its final position, according to the duration
specified for the take.

Note that no interactions have been specified
between the movie and the external environment, so all
the operations described above may be easily performed
without using adaptive devices.

However, in our illustrating interactive example,
during the exhibition of the movie, the user is allowed to
disturb its presentation by dragging shapes apart from
their path. Although the current position of the shape is
changed by that action, the final position of the shape in
its original path will be maintained by the viewer, and
another path from the new position to the original final
position is drawn, so the shape starts to move through the
new path towards the final position.

Although the current implementation is restricted to
displacement actions, other disturbances would be
allowed easily in the system, such as modifications in
rotation speed, size variations and dynamic color
changing for the shapes.

Other improvements may be included in this system
in a second moment, regarding the achievement of special
effects through specification of more complex run-time
behavior defaults, such as non-straight paths, non-uniform
speed for the shapes, variable-interval interpolation for
the intermediate frames, fading effects for the take,
insertion of sound effects, etc.

Our Adaptive 2-D Presentation System consist of a
compressor that builds the packed form of the movie from
an original non-compressed movie (or an film editor, that
generates the compressed movie directly from user
specification), and a corresponding viewer, which
performs the needed interpolations in order to restore and
present the packed movie in visual form. The overall
architecture of our system is sketched in the figure below.

Original frame sequence → Restored frame sequence

 ↓ ↑

editor (compressor) → packed movie → viewer (expander)

Specification of the System

We start the description of our system by choosing
some notational framework through which we will
represent movies in packed form, as described before.

• a packed movie PM may be specified as a sequence of
frame pairs FPi , composed of its left frame LFi and its
right frame RFi .

 PM = FP1 FP2 FP3 ... FPn

 FPi = LFi RFi , 1 ≤ i ≤ n

• When PM is viewed, a sequence SFi of interpolated
frames replace the corresponding pair FPi in the
packed form of the movie, and the restored movie RM
will be the resulting sequence of frames. Interpolation
is performed so that all resulting frames are equally
spaced by some adequately chosen refresh time rt
along the duration time ∆ti of the take associated to
FPi

 RM = SF1 SF2 ... SFn

 SFi = F i
 1 F

 i
 2 ... F

i
m

i
 , 1 ≤ i ≤ n, with

 LFi = F i
 1 and RFi = Fi

m
i
 and mi = 1+∆ti/rt

• Each frame F i
 k (1 ≤ i ≤ n, 1 ≤ k ≤ mi) in RM may be

described as a list of components. Each component is
represented by the corresponding elementary
geometric shape type and its set of attributes
(depending on the type of the component, attributes
vary in number and nature)

 F i
 k are of the form

 (identification, type, attribute, attribute, ...) where

 identification – is some code that designates the shape
 univocally

 type – stands for the nature of the geometric shape:
 straight segment, circle, etc.

 attribute – stands for x- and y- coordinates, color, layer,
 thickness, etc.

• For dynamic operations, translation, zooming,
rotations and fading effects are allowed.

• At any moment, while the movie is exhibited, the user
may dynamically introduce external disturbances to
arbitrarily chosen patterns of the current frame by
dragging, imposing rotation, zooming or color
changing.

• defaults may be established for all parameters. If
nothing else is specified, defaults are used: minimum
rotation angle, number of intermediate frames,
straight path, steady speed, constant color, minimum
and constant angular speed

From a dynamic viewpoint, the operation of our system
proceeds as follows:

• establish an adequate number of intermediate frames
for the next pair of frames in the packed movie.

• establish the space and color path to be followed by
each moving element or group in the scene.

• for each intermediate frame, calculate the adequate
values of the attributes for all elements in the scene,
throughout their respective paths

300-224 4

• extract sequentially the frames from the expanded
movie and draw all its elements, then wait for the
corresponding interval of time to elapse before
drawing the next frame.

While a movie is being presented, the user may
interfere by asynchronously applying external interrupts
through mouse commands in order to displace some
element apart from its current position or to change some
of its current attributes.

In order to apply such disturbances to the movie, the
user simply drags an element through the window, or
clicks first a function button, then the element to be
affected. In these cases, interrupt the former operation,
accept the disturbance as a command to be executed and
interpret it by applying a corresponding handling routine,
as follows:

• dragging – interpret dragging as a command to
displace the element to a new position, then
interpolate a new straight path from the new position
to the original final position of the element; erase the
remaining path for that element and insert a new one;
resume the interrupted routine.

• changing color – apply the requested color change to
the element and resume.

• drawing a color path – calculate for the current
remaining path of the chosen element the
intermediate colors to be imposed, then correct the
corresponding color attributes for the element in all
remaining frames, then resume.

• rotation – split the requested rotation action into
intermediate partial rotations, then apply them to the
corresponding attribute for the chosen element in all
remaining frames, then resume.

• fading – calculate the color path to be followed by the
element in order to fade properly; correct the
corresponding attribute on the remaining path of the
element and resume.

Implementation Issues

Now we can draw a model for the implementation of
our system from the specifications above. At a first
implementation level, it may be viewed as a system that
operates in two modes: in the first mode of operation, the
system acts as an editor, and in the second mode, as a
viewer. System starts in edit mode, and executes an
arbitrary number of edit commands. Then the user issues
a VIEW command, and watches the movie continuously,
then he or she issues a stop-command in order to return to
halt the movie and enter edit mode again. Edit mode is
entered automatically at the end of the exhibition of the
current movie. While the movie runs, the user is allowed
to disturb it by issuing disturbance commands. The
following expression defines a regular–language
approximation to the command language of our system:

((edit-cmd)* (VIEW-cmd) (disturbance-cmd)* ((stop-
cmd) | (end-of-movie-event)))*

The figure below depicts a simplified command flow
and the changes in the mode of operation in our system,
with no regard to asynchronous issues.

↓

edit command→→→VIEW command →→→→→→ stop command →→→→→

↑ ↑←←↓ ↓ ↑ ↓

↑ (change to VIEW mode) ↑ ↓

↑ ↓ ↑ ↓

↑ present next frame→→ (wait an interval of time) →→ disturbance command ↓

↑ ↓ ↑ ↓ ↓ ↓
↑ end of movie ↑ ←←←←←← ↓←←←←←←←←← (handle disturbance) ↓

↑ ↓ ↓
↑←← ←← (change to EDIT mode) ←←←←←←←←←←←←←←←←←←←←←←←←←←←←← ↓

Edit commands may perform the following
functions:

• create a blank frame by clicking a button
• clear current frame by clicking a button
• insert a new geometric shape into a frame by clicking

some shape button, then clicking the frame at the
desired coordinates and dragging the cursor until the
shape acquires the desired aspect.

• change the position of an already existent shape by
clicking the desired shape and dragging it to the new
position in the frame

300-224 5

• change the size of an existent shape by selecting the
shape, then dragging its corner until the shape acquires
the wanted format.

• change other shape parameter – color, rotation angle,
fading effects – by clicking the adequate function
button, choosing the new parameter value, and then
clicking the target shape.

The set of edit commands is expressed by the
following expression:

(edit-cmd) = (new-frame-button) | (clear-button) |

 (shape-button) (click)(drag) |

 (select-shape)(drag) |

 (select-shape)(drag-corner) |

 (color-button)(color-select)(click) |

 (rotation-button)(angle-select)(click) |

 (fade-button)(fade-select)(click)

The set of disturbance commands is the same, except
for the single-click commands:

(disturbance-cmd) = (select-shape)(drag) |

 (select-shape)(drag-corner) |

 (color-button)(color-select)(click) |

 (rotation-button)(angle-select)(click) |

 (fade-button)(fade-select)(click)

The former specifications, including the language
definitions above, may be used as a general direction for
the implementation of our system.

In [9] (elsewhere in these proceedings) we sketch an
adaptive statechart representing our system, and we
shortly describe an implementation prototype constructed
following this model.

Conclusion

An extension of traditional statecharts is used, which
imports the concept of adaptability from adaptive
automata, resulting a formalism that may be used as a
practical approach to support more efficient
implementations than similar models proposed in the
literature.

In this article we discuss adaptive formal models as
tools for expressing in a more natural way the behavior of
self-modifying systems.

We illustrate the concept of adaptive methods by
applying it to the specification and implementation of a
simple system used for creating and viewing interactive
compressed 2-D movies with moving geometric shapes
that allow operator interference at run-time.

Dynamic modifications are applied to the elements
of the set of moving shapes present in the movie frames in
run time.

Adaptive features are explored in the system to
express the dynamic behavior of the interactive movie,
illustrating the power of this feature.

Besides allowing direct use of theoretical
formulation in order to produce good implementations,
adaptive techniques allow knowledge acquisition to be
included in the resulting models.

This effect is achieved through self-modification of
their own reactions to external stimuli in response to new
information acquired from input data.

Therefore, intelligent systems may be represented
through adaptive models. In particular, the graphical
nature of adaptive statecharts make them better to
understand and to design than equivalent clause-based or
algebraic formulations.

Usual models are static, and some eventual dynamic
behavior of the system being modeled must be considered
separately. When representing dynamic reactive systems,
our model allows the whole system to be modeled at once.

Adaptive models have many applications, and the
one presented in this paper is a very simple and informal
case study, understandable even by non-specialists, in
which the underlying concepts of adaptive formalisms and
of reactive system modeling may be identified.

References

[1] José Neto, J. Adaptive Automata for Context-
Dependent Languages ACM SIGPLAN Notices, Vol. 29,
n. 9, September 1994, p. 115-124
[2] Cabasino, S.; Paolucci, P. S.; Todesco, G. M.
Dynamic Parsers and Evolving Grammars ACM
SIGPLAN Notices, Vol. 27, No. 11, 39-48 (November
1992).
[3] Almeida Jr., J. R. STAD - Uma Ferramenta para
Representação e Simulação de Sistemas. Através de
Statecharts Adaptativos Tese de doutoramento – Escola
Politécnica da Universidade de São Paulo – São Paulo,
Brasil, 1995 (in Portuguese).
[4] Pereira, J.C.D.; José Neto, J. Um Ambiente de
Desenvolvimento de Reconhecedores Sintáticos Baseado
em Autômatos Adaptativos. Simpósio Brasileiro de
Linguagens de Programação, 1997 (in Portuguese).
[5] Shutt, J.N. Recursive Adaptable Grammars. Ph. D.
Thesis, Worcester Polytechnic Institute, 1993.
[6] Christiansen, H. A survey of adaptable grammars
.SIGPLAN Notices, vol.25, n.11, p.35-44, 1990.
[7] Burshtein, B. Generation and recognition of formal
languages by modifiable grammars. ACM SIGPLAN
Notices, v.25, n.12, p.45-53, 1990.
[8] José Neto, J. , Almeida Jr. , J. R. , Santos, J. M. N.
Synchronized statecharts for reactive systems. IASTED’98
- Applied Modelling and Simulation Honolulu, Hawaii,
USA Aug. 12-14. 1998, p. 246-251
[9] Almeida Jr., J.R., José Neto, J. Using adaptive models
for system description. IASTED’99 - Applied Modelling
and Simulation Cairns, Australia Sept. 1-3. 1999

	João José Neto, Jorge Rady de Almeida Júnior

