
Proceedings of the IASTED International Conference
Applied Modelling and Simulation
September 1-3, 1999, Cairns, Australia

300-006 1

Using Adaptive Models for Systems Description

Jorge Rady de Almeida Júnior, João José Neto
Escola Politécnica da Universidade de São Paulo

Departamento de Engenharia de Computação e Sistemas Digitais
e-mails: jrady@pcs.usp.br, jjneto@pcs.usp.br

Keywords: Adaptive Models, Adaptive Statecharts, Systems Modeling

Abstract

Synchronized Statecharts [1] have shown to be
adequate devices for expressing most features of real-time
and reactive systems. The emphasis is in the explicit
statement of orthogonal aspects, such as internal behavior,
communication interfaces and synchronization issues of
the system being modeled.

This paper explores Adaptive Statecharts, which
improves Synchronized Statecharts by including adaptive
features used to describe dynamic aspects of the behavior
of the target system. The presence of adaptive features in
a formal model makes it suitable for the specification of
systems whose reactions to external events may change
dynamically. So the conceptual difference between
adaptive and non-adaptive devices is that the former
allows describing in a more natural way those systems
capable of modifying their own behavior in response to
external stimuli.

Introduction

Adaptive features may be useful whenever the target
system spontaneously changes its own set of user-
available operations. This is the case with customizable
protocols, man-machine interfaces and a wide range of
intelligent applications, in particular those with learning
abilities or variable features. [2]

Some fields of application of adaptive formalisms
are: general context-dependencies; control and
supervision systems; on-line graphical interfaces;
customizable systems of many kinds; computer art;
computer-aided tools; educational; fashion; medical;
gaming; learning; tutoring, etc. We illustrate the use of the
proposed adaptive statecharts by means of a small case
study in the domain of computer art.

The adaptive approach is illustrated through a
computer animation example employing an alternative
way to represent 2-d scenes made up of moving geometric
shapes. In this system users are allowed to temporarily
disturb the animated sequence by issuing commands that
externally force shapes out of their original path by
moving them, rotating them and changing their sizes.

An available tool – ECSS (Evaluation of Critical
Systems Specifications) – has been used to test our
system. This program allows representing and simulating
adaptive statecharts, and upgrades in many aspects an
earlier system named STAD (ADaptive Statecharts) [3],

[4] e [5]. ECSS and STAD are computer tools for
representing and simulating adaptive statecharts. It
permits the simulation of the main features of that
example.

Based on the results achieved through the
experiments made with ECSS, a program prototype
named SYSTEM 2D was developed, which retains in its
algorithms all adaptive features included in the
experiments.

Moving scenes are compressed as a sequence of
pictures representing only significant snapshots instead of
containing all frames in the movie. This packed format
movie is then decompressed by interpolation, at run time.
Users are allowed to issue commands and the resulting
perturbations modify the original stream by adding new
commands, which are dynamically interpreted the same
way original frames do.

A good approximation of the sequence of original
frames may be obtained by means of our adaptive model,
which performs the needed interpolations between
consecutive frames in the packed movie, so restoring
intermediate snapshots.

The main advantages of this technique is that the
compressed movie is expected not only to spend less
space in memory and hard disk, and save communication
costs, but also to allow users to interact with the
animations at run time.

In order to generate and interact with those moving
scenes an image editor and a viewing program is needed.
In this paper we sketched that viewer to illustrate the use
of adaptive statecharts to describe the decompression
process while handling the disturbances issued by the
user.

SYSTEM 2-D

SYSTEM 2-D allows the visual animation of
geometric shapes - points, straight lines, rectangles and
circles, forming a movie.

Shapes are grouped together in frames, and the
sequence of frames edited by the user defines the
expected movie. Movies are run by interpolating shapes
between two consecutive frames in the packed movie.

The exhibition of the resulting sequence of frames at
some adequate rate gives to an observer the desired
animation effect.

300-006 2

t = t0

t = t1

t = t2

∆t = t1 - t0

∆t = t2 - t1

Movie

Figure 1 – Movie with frames

The principle of decompression with exhibition
purposes is the interpolation made between geometric
shapes contained in the frames edited by users. These
frames represent the desired sequence. The interval of
time between two consecutive frames is one another
parameter that must be considered in the interpolation.

Figure 2 presents the basic structure of the proposed
system. Basically two modules compose the system:
Movie Edition and Movie Exhibition. Data related to all
movies inserted in SYSTEM 2D are available in a
common database. Exhibition of the movies starts by
retrieving the corresponding data from that database.

Movie
Edition

Movie
Exhibition

Data Base

Animation

Figure 2 – SYSTEM 2D

One of the distinguished feature of this system is the
ability users have to interact with the movie being
exhibited. That is made by using the mouse to select an
object to be disturbed, and then change of its position in
the computer screen by dragging it through a mouse
command.

By means of function buttons, users are allowed to
select other operations to be performed, such as size
modification, color changes, rotation action, fading
effects, etc. Once selected the desired action, a click of the
mouse over the desired shape will apply the
corresponding function to the shape.

Modeling of SYSTEM 2-D

SYSTEM 2D has two sub-modules, as illustrated in
figure 3 – an Editor and an Viewer.

Exhibition
Commands

Editor
(compressor)

SYSTEM 2D

Viewer
(Expander)

Figure 3 – Statechart of System 2-D

The bubble Editor, as presented in the figure 4,
represents the compressor module, which allows the user
to specify the basic geometric shapes: points, circles,
rectangles and straight lines. The Editor has sub-modules
that perform the initial drawing, change the size of the
shapes, move them in the frame, delete shapes, apply
colors and rotate them.

User must define the name of the film and then edit
the desired sequence in the movie. That is specified by
means of its initial frame and its corresponding evolution.
The viewer module performs the animation of the
sequence by presenting its frames sequentially at adequate
time intervals.

Check
Command

End

Clear
Screen

Point Line

Rectangle Circle

Draw
Elements

Line

Rectangle

Circle

Change Size

Point Line

Rectangle Circle

Move Elements

Point

Delete Elements

Rotate
Elements

Editor

Draw
command

Draw
OK

Line

Rectangle Circle

Rectangle

Circle

Change
command

Change
OK

Rotate
command

Rotate OK

Delete
commandMove

command Delete
OK

Move
OK

Figure 4 – Expansion of bubble Editor

The editor is composed by the following main table’s
stores the data of each film:

table Straight Lines: Fields – Name of the movie, number
of the straight line, angle, length, x-coordinate of the
origin, y-coordinate of the origin, number of the frame

300-006 3

table Rectangles: Fields - Name of the movie, number of
the rectangle, length of side 1, length of side 2, x-
coordinate of the top left corner, y-coordinate of the top
left corner, number of the frame

table Circles: Campos - Name of the movie, number of
the circle, ray, x-coordinate of the center, y-coordinate of
the center, number of the frame

table Points: Campos - Name of the movie, number of
point, x-coordinate, y-coordinate, number of the frame

Data recovery is made by the viewer from the
database, as illustrated in figure 5. The Viewer initially
identifies the shapes in the frame. Then it makes its
interpolation with the previous frame, exhibiting the
resulting sequence of frames. The Viewer executes the
proper frame animation by sequencing the resulting
frames with an adequate timing.

Shape
Identification

Frame n

 Interpolation
(n/n-1)

Interpolated
Sequence

Presentation

Disturbance
Handler

Screen
Interpolation

with Disturbance
(n'/ n-1)

End

Viewer

F

I

OK

DMsg

OK

Figure 5 – Expansion of bubble Viewer

The sequence of actions that are executed by the Viewer
for each take in the movie is:

• Identification of all shapes in frame n (in the packed
movie)

• Drawing of all objects of screen n

• Identification of all shapes in frame n+1

• Interpolation of intermediate frames, according to the
duration of the current take and the selected refresh
time for the frames

• Drawing of the interpolated frames

Figure 6 illustrates the assembly of the exhibition
statechart of an interpolated sequence.

Disturbance handling is essential to the
implementation of dynamic features imposed by the user
interactive disturbances.

Shape
 1-1

N shapes in M frames

Shape
 2-1

Shape
N-1

Shape
 1-2

Shape
 2-2

Shape
N-2

Shape
 1-M

Shape
 2-M

Shape
N-M

Figure 6 –Interpolated Sequence Presentation

While shapes are moving, user may change their
positions by dragging them with the mouse. This action
affects the original frame sequence. Such a disturbance
forces the system to handle that event as modeled in the
statechart of figure 7.

Identification of the
Disturbed Element

Disturbance Handling

Identification of the
Type of Disturbance

Validation of the
Requested Action

Generation of
Error Message

D

F

Msg

Figure 7 – Bubble Disturbance Handler

The disturbance is recognized and handled by the
module Disturbance Handler, and a new interpolation is
accomplished (new frame - with disturbance / previous
frame). The new interpolated sequence is exhibited to the
user. The modified sequence of frames starts at the
moment of the disturbance, and replaces the former one.
This replacement is implemented by performing an
adaptive action.

300-006 4

This adaptive action causes the creation an adequate
number of groups to correct the original sequence of
frames for the affected shape. Each new basic group is
composed by a new bubble, equivalent to a new state of
an automaton and by two new connections. There is also a
basic group that is suppressed from the original statechart
that represents the initial interpolation. One bubble and
two connections are deleted from that original sequence.
These are replaced by the elements added by the new
basic group.

Shape
 x-y

Shape
 x-y

Basic Group
Added

Basic Group
Deleted

Adaptive
Function F

Figure 8 – Adaptive Function F

The execution of an adaptive action is illustrated in
the example described below.

The disturbance handling occurs by first identifying
the disturbed element, as well as the disturbance type.
Then the path change is tested for adequacy. For possible
changes, the adaptive function is activated. Otherwise, an
error message is generated, indicating the occurrence to
the operator.

The complete modeling of this example was
performed by using ECSS (figure 9). Figure 10 presents a
work frame of SYSTEM 2D.

Figure 9 – Modeling of System 2-D through ECSS

Figure 10 – A Frame in SYSTEM 2D

Example

This example refers to figure 11, which shows two
frames represented by the user. Those frames contain two
points, one in coordinate (0,0) and another in coordinate
(5,5). The corresponding displacement of shapes should
be accomplished in 5 seconds.

Figure 12 shows a trace of the sequence of positions
assumed by the two points. At the instant t + ∆t seconds,
the point number 1 was moved by the user through a
mouse action from its coordinate (0,2) to the coordinate
(3,2). This is a disturbance and the trajectory of point 1
has to be corrected. In the figure 12 we can see also the
new calculated trajectory of point 1, starting from the
coordinate it had at the time the disturbance was applied.

300-006 5

The adaptive statechart representing the original
undisturbed sequence of frames is presented in figure 13.
The resulting statechart after handling the occurrence of
the disturbance is presented in figure 14.

It should be noticed that starting from coordinate
(0,2) for the point 1, the adaptive function starts by
removing three basic groups associated to point 1, and
adding three new basic groups related to the same point.
The execution of the adaptive action causes the correction
of the trajectory that was modified by the disturbance
imposed by the operator.

File Edit . . .

point 1

point 2

(0, 0)

(5, 5)

∆t = 5 s

(0, 5)

(5, 0)

SYSTEM 2-D

Figure 11 – Example of a movement between two screens

planned trajectory (undisturbed)

File Edit . . .

point 1

point 2

(0,0) t = 0s

SYSTEM 2-D

(0,1) t = 1s
(0,2) t = 2s
(0,3) t = 4s

(0,4) t = 4s

(0,5) t = 5s

(5,0) t = 5s
(5,1) t = 4s
(5,2) t = 3s
(5,3) t = 2s

(5,4) t = 1s

(5,5) t = 0s

planned trajectory (after a disturbance)

File Edit . . .

point 1

point 2

(0,0) t = 0s

SYSTEM 2-D

(0,1) t = 1s

(3,2)
t = 2+dt

(2,3) t = 4s

(1,4) t = 4s

(0,5) t = 5s

(5,0) t = 5s

(5,1) t = 4s

(5,2) t = 3s

(5,3) t = 2s

(5,4) t = 1s

(5,5) t = 0s

disturb
ance

Figure 12 – Example of a movement between two frames
with a disturbance (empty dots represent successive

coordinates in the path of the points)

point 1
coord. (0,0)

point 2
coord. (5,5)

point 1
coord. (0,1)

point 2
coord. (5,4)

point 1
coord. (0,2)

point 2
pos. (5,3)

point 1
coord. (0,3)

point 2
coord. (5,2)

point 1
coord. (0,4)

point 2
coord. (5,1)

point 1
coord. (0,5)

point 2
coord. (5,0)

Figure 13 – Statechart of the Example without disturbance

point 1
coord. (0,0)

point 2
coord. (5,5)

point 1
coord. (0,1)

point 2
coord. (5,4)

point 1
coord. (0,2)

point 2
coord. (5,3)

point 1
coord. (3,2)

point 1
coord. (0,3)

point 2
coord. (5,2)

point 1
coord. (2,3)

point 1
coord. (0,4)

point 2
coord. (5,1)

point 1
coord. (1,4)

point 1
coord. (0,5)

point 2
coord. (5,0

Figure 14 – Statechart of the Example after the Handling of a Disturbance

(dashed lines indicate deleted elements)

300-006 6

Conclusions

The main advantages of this technique is that the
compressed moving scene is expected not only to spend
less space in memory and hard disk, and save
transmission costs, but also to allow users to interact with
animations. The program built in agreement with the
adaptive technique allows checking the effectiveness of
this modeling type.

Similar applications of adaptive devices may be
used, for example, to simulate member movement, for
handicapped people, in athlete and choreographic
training, in pedagogical objectives, in the production of
cartoons, children learning, and so on.

One characteristic not yet implemented in SYSTEM
2D is the creation of a module that can assembly a movie
from sequences extracted from already existing frames (in
several formats). This module could assemble screens
stored in the database, determining and extracting relevant
frames from the original movie, capturing automatically
the relevant screens only.

Movie
Edition

Movie
Viewer

Data Base

Movie
Compression

Animation

Original
Movie

Figure 15 – SYSTEM 2-D

Another evolution of SYSTEM 2D is the automatic
execution of semantic actions, starting from the modeling
tool (ECSS). Semantic actions could include move,
delete, create and rotate shapes. With this type of
implementation ECSS will become a tool with
prototyping capacity.

ECSS Inter
preter

Data Base

CodeSpecifi
cations

Figure 16 – Advanced SYSTEM 2-D

Another characteristic to be implemented is the
possibility of several types of movements of the objects in
the user’s frames, such sinusoidal, movement speed
alternation of the objects, such as fast in the beginning
and slow in the end, and vice-versa.

References

[1] J. José Neto, J. R. Almeida Jr. e J. M. Santos,
Synchronised Statecharts for Reactive Systems, Applied
Modelling and Simulation, 1998, Honolulu, Hawaii, USA,
246-251

[2] R. S. Rubinstein, J. N. .Shutt, Self-modifying finite
automata: An introduction, Information Processing
Letters, v.56, n.4, 24, p.185-190, 1995.

 [3] J. R. Almeida Jr. e J. B. Camargo Jr., ECSS - A Tool
using Adaptive Statecharts for Evaluation of Critical
Systems Specifications, to be published in 17th

International System Safety Conference, 1999, Orlando,
USA.

[4] A. Sowmya, S. Ramesh, Extending Statecharts with
Temporal Logic, IEEE Transactions on Software
Engineering, vol. 24, no.3, march 1998, p. 216-231.

[5] O. Maler, Z. Manna, A. Pnueli, From Timed to Hybrid
Systems, Proceedings of the REX Workshop on Real
Time: Theory and Practice, 1991, Springer Verlag, New
York.

	Jorge Rady de Almeida Júnior, João José Neto
	
	Abstract
	Conclusions
	References

