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Abstract 
The aim of the present paper is to revisit some important topics regarding 

pedagogical issues on the teaching of concepts and techniques of programming 
languages and compiler construction. Essentially, a unified formal model is used 
in the proposed approach to explore the exposition of  the students to a set of 
lessons with growing complexity, with a heavy practical component, all sharing 
the same common formal model. Experiments start with the definition of regular 
languages, aimed to introduce concepts and give the students familiarity with 
formal languages and their description through a metalanguage suitable for direct 
mapping into finite-state automata. Context-free languages are then considered as 
a simple extension of regular languages, both in grammar and acceptor aspects. 
The proposed formulation allow considering context-dependent languages as 
natural extensions of context-free ones, by adding some arrangements, while 
covering issues related to scopes, types, dynamic syntax, static semantics and 
language extensibility. 
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1. Introduction 
For many years we have been teaching computer languages and their compilers for 

Electrical and Computing Engineering students, and many experiences have been made while 
searching for some pedagogical approach that turns easier the task of transferring to the 
students information, technical issues and, especially, scientific foundations for the 
techniques. 

At the time they have attended our classes, those students have already been exposed to 
related topics in other disciplines, and they have expressed preference in technical but non-
heavily-theoretical disciplines, making the task of teaching pure computer-science disciplines 
a very hard task. 

Because of their unquestionable importance in the formation of good professionals in this 
area, conceptual subjects like computer language issues, formal languages, automata theory, 
compiler construction and related topics do demand special care to be taught, in order to 
maintain motivation, despite how arid their theoretical aspects may appear to an Engineering 
student. 

We decided to reduce this problem by addressing these subjects in a lighter form, without 
losing accuracy and without omitting any relevant aspect of the needed scientific foundations. 



2. Conceptual framework 
Our approach has been to adopt a single unified notation for all classes of languages, in 

order to minimize the need of learning a different notation for each kind of language [1,2].  
Since Computer and Electrical Engineering students are familiar with the state-transition 

models they derive digital circuits from, our first choice when specifying our notation would 
be also trying to state our language descriptions in terms of states and transitions. 

Next, we searched for a notation that be the closer possible to familiar notations that are 
frequently used for representing sequential circuits. 

It would also be convenient that descriptions of simpler languages be simpler than those of 
more complex ones. We searched for conceptual differences between each class of languages 
and the next more complex one, in order to determine the correspondence between the 
presence of those features in the language and the corresponding notational needs. 

From that investigation, we were able to select a notation which satisfies our requisites by 
showing a hierarchical structure that allows us to represent languages of any kind of 
complexity by strictly using the corresponding features of the notation that are really needed 
for their representation.  

In the remainder of this section we justify and comment the more significant aspects of the 
features included in the notation. 

 

Regular languages 

• regular languages need no more than a finite-state machine for their descriptions. 
• non-determinism may be easily eliminated from any finite-state machine by applying 

well-known classical algorithms. 
• standard finite-state machines may accept any regular language in linear time. 

Context-free languages 

• non-regular context-free languages need pushdown automata to accept them. We may 
build such a device by using the model called structured pushdown automata, with one 
state machine for each essential syntactical construct in the language, and a pushdown 
store for coordinating their operation. 

• it is possible to minimize the use of the pushdown store by properly choosing and 
designing the set of  state-machines, so that auxiliary memory be used strictly when 
starting or finishing each embedded construct in the input text 

• non-determinism may be eliminated in many languages by proper manipulation of the 
language description and of the corresponding state machines 

• with this scenario, for deterministic languages, each state machine operates as a finite-
state machine, except when handling embedded constructs, when an additional access to 
the pushdown store is needed at the start, and another one at the end of each embedded 
construct present in the input string. So, we may identify several substrings in the input 
text, each handled in linear time by some state-machine. We identify also several 
changes of control among the state machines, each demanding an extra access to the 
pushdown store. As we know, in any finite string the maximum possible number of 
embedded constructs is proportional to its length, so the time needed for handling 
embedded constructs is also a linear function of its length. We conclude that such a 
scheme lead to an accepting device that operate in linear time for deterministic 
languages. 



• the demands for space is also linear for deterministic languages: what is needed is a 
static space for the transition tables, which, in the worst case, request space proportional 
to the total number of states, and a dynamic space for holding control information in the 
pushdown store, which is proportional to the length of the input string. So, for 
deterministic languages, space demands are also linear. 

• for intrinsically non deterministic context-free languages, although there is no way to 
find any deterministic acceptor for them, we can manage to build structured pushdown 
automata that operate deterministically for some chosen subset of the language. For 
these devices, response time remains linear while input strings belong to that language 
subset. For sentences that do not belong to the subset, its operation will remain on 
deterministic. In this case, deterministic behavior is obtained for sentences in the chosen 
language subset at the cost of growing the size of the automaton. The wider the set of 
sentences we need the automaton to accept deterministically, the bigger will be the 
resulting automaton. 

Other languages 

• for languages that are neither regular nor context-free, the device we are looking for 
must have features that allow it to handle context-dependencies. By observing context-
sensitive languages, we can verify that it differs from context-free ones in a fundamental 
point: whenever any context-sensitive construct is present somewhere in the input text, 
the whole text is reinterpreted accordingly. For an accepting device, this fact means that 
such an occurrence would have, as a response, an adequate change in the behavior of 
the acceptor. This kind of reasoning led us to the model named adaptive automaton, 
which is no more than a structured pushdown automaton, in which transitions associated 
to the discovery of some context-dependency in the source text drive the execution of 
attached adaptive actions, responsible for changing the automaton’s behavior, which is 
accomplished by means of adequate editing operations on the set of transitions of the 
automaton. 

Comments on the proposed notation 

• from all the former information, we are now ready to state our notation. It will have 
three elements: the first one is a set of state transitions, needed to represent finite-state 
automata; the second is a pushdown store, needed to perform control actions in 
structured pushdown automata; the third element are the adaptive actions, which are 
attached to transitions in order to allow them to edit the automaton. Any transition in the 
adaptive automaton will always have the first element, but the others are optional. 

• being strictly syntactical devices, adaptive automata allow describing rather complex 
languages without using anything else such as semantic routines or similar elements. 
For instance, a high-level syntactically extensible language may be completely 
described formally by means of adaptive automata, including the lexical and extension 
mechanisms, which are traditionally described separately, and its full static-semantics, 
including symbol tables, structuring scopes, type-checking and many others, which use 
to be handled by extra-syntactic elements, like semantic routines. 

• once determined the notation to be used for describing languages, we should search for 
methods for automating the generation of processors for these languages. In this way we 
have developed a software tool that accepts as input a language description, drawn in a 
notation similar to that we had just chosen for the adaptive automata, that simulates the 
adaptive device it describes. 



The proposed notation [3] 
Any automaton will be represented as a collection of productions of the form: 

(t, s, a, B) → (t’, s’, a’, B’)  
where each quadruple denote, in this order, the top of a stack, a state, an input symbol and an 
adaptive action. The left one denotes the configuration of the automaton before the transition 
takes place, and the right quadruple represents the configuration after the execution of the 
transition. 

B represents an adaptive action to be performed before applying the production, and B’ is 
another adaptive action, to be executed after the application of the production. 

Adaptive actions are calls to adaptive functions, which are declared as lists of elementary 
adaptive actions of inspection, deletion and addition, applied to the current set of productions 
in the automaton. Elementary adaptive actions allow to edit the set of productions, in order to 
impose modifications to the behavior of the automaton, and has the following aspect: 

⊗[(t, s, a, B) → (t’, s’, a’, B’)] 

where  ⊗ assumes one of the values ?, – or +, for inspections, deletions and additions, 
respectively. 

Inspections allow asking for productions with a given shape in the current set of 
productions. Deletions allow eliminating productions with a given shape from the current set 
of productions. Additions allow adding new productions to the current of set productions. 

Regular languages do not use terms t, B, t’, a’, B’. Context-free languages do not use  B, 
a’, B’. Both regular and context-free languages do never use adaptive actions. In this paper, 
we are going to use these simplified notation only, since no context-dependent features are 
needed here. 

So, regular transitions will be denoted as (s, a) → s’ and context-free transitions in which 
the stack is used will take the form (t, s, a) → (t’, s’). 

3� Teaching issues [4] 
In this section we report an experience made by applying the proposed notation in teaching 

practical aspects of compiler construction in an undergraduate computer engineering course, 
to students with basic knowledge of finite-state machines and context-free grammars. 

Two monthly two-hour classes have been divided in two halves, the first of which was 
used to review and to introduce concepts and techniques, and the last one to perform graded 
practical exercises in class, preparing the student to implement the corresponding program-
exercise in a computer, as a homework. 

As a whole, the project consisted in the following steps: 
The first stage was intended to exercise the ability of the students in formally defining 

regular and context-free languages. Starting from very simple languages, this step ended after 
the student has been able to define all important sublanguages of a typical programming 
language. 

With the formal definition of all components of a language already available, the next step 
has been to integrate them into a single definition of a simple but complete programming 
language, defined by the student with the aid of textbooks on  programming language design. 

After that, but without being exposed to compiling techniques, students were asked to 
convert their formal grammars into automata, starting from regular constructs, which resulted 
in programs implementing all major parts of a lexical analyzer for the language, and then the 
rest of the language, resulting in parts of the syntax acceptor of the language. 



Then, usual recognition techniques were exercised, through exercises in which the former 
grammars have been mapped into top-down and bottom-up parsers. The main results from 
this activity has been the increase in the capacity of the student to accurately decide when and 
why to use each technique. 

The next topic was a deeper study of the particular technique described in the following 
section, in which a method is used that allows easy building of a recognition device for a 
language directly from a given grammatical formal definition of its syntax. In this topic, 
students have the opportunity  of comparing the adopted technique with the others, especially 
in terms of building effort needed, and of execution performance. As a homework, the 
language defined by the students are manually converted into the corresponding recognition 
device. If time permits, the resulting acceptor is implemented in a computer, giving the 
students a good feeling of the process. 

For shorter courses, the next step will be adding semantic routines to the recognizer, in 
order to generate code, and the course will be finished. 

For normal courses, there is time enough to add a project of a generator of syntax 
acceptors, so introducing the concepts and practical issues of metacompiling. 

Being already trained in manually building syntax recognizers, students are asked to build 
another acceptor, for the language of Wirth Notation texts. It will accept any grammar in 
Wirth Notation, so it would be tested with the formal definition of the language designed by 
the students as input. 

Next, semantics will be added manually to the acceptor, in order to automate the activity 
already done manually by the student when building from the Wirth grammar the acceptor for 
the language. The resulting acceptor must be the equivalent to the one previously done 
manually. 

The last step will be putting the acceptor to work and manually decorating it with semantic 
routines for code generation. This will be, indeed, a minor problem, since all this task will be 
reduced to migrating into our acceptor the already designed semantic routines, which we have 
implemented and tested in a previous step. 

If time permits, a further test would be performed by using our tool with other grammars, 
in order to generate acceptors for other languages.  

 

4� The method proposed [4] 
The following text describes a step-by-step conversion from BNF-like context-free 

grammars into equivalent deterministic automata. For convenience, we will use the Wirth 
Notation as an intermediate metalanguage, in order to turn it easier the mapping of the 
grammar into an equivalent automaton. 

A very simple method is then used that maps this Wirth grammar into a structured 
pushdown automaton which accepts texts in Wirth notation. 

Semantic routines are then manually added to an optimized version of the resulting 
automaton, in order to force it to perform the same procedures we used to manually construct 
structured pushdown automata from Wirth grammars. 

Denoting context-free grammars in Wirth notation 

BNF-like notations are very used to state programming language syntax. The first step in 
the construction of our automaton from such context-free grammars is to convert them into 
Wirth notation  (for other metalanguages the procedure is very similar). Apply the following 
steps: 



• Associate a different set to each nonterminal in the original grammar, and collect in 
each set all rules defining the corresponding nonterminal.  

• Eliminate from each set all left- and right-recursive rules defining the corresponding 
nonterminal, retaining self-embedded expressions:  

• Let X be a nonterminal, and let all terms different from X in the following expressions 
represent arbitrarily long strings of terminals and nonterminals. In the set defining X in 
terms of expressions of the forms Xai, bjX, ckXdk, em, XfnX, we will interpret, for 
convenience, expressions of the form XfnX as being of the form Xai, and ckXdk as being 
of the form em.  

• It is easy to show that the corresponding Wirth expression is X = {b} e {a}, where b, e 
and a abbreviate b1|b2|...|br, e1|e2|...|es, and a1|a2|...|at, respectively, with r, s and t 
representing the number of terms of that form in the group. So, rewrite the set defining 
X in the form. X = {b} e {a}. 

• Eliminate from the grammar all non-essential nonterminals. Essential nonterminals are 
the root of the grammar and a minimal set of independent self-embedded nonterminals 
in the grammar. In case of cyclic dependencies among nonterminals, choose from the 
cycle the nonterminal that be most directly derivable from the root . All other non-
essential nonterminals may be eliminated by substituting successively all their 
occurrences in the grammar by the Wirth expression defining them, and then repeating 
the elimination steps until no more non-essential nonterminals remain.  

Preparing a Wirth grammar to be mapped into a deterministic automaton 
Once obtained the set of expressions defining all essential nonterminals, they must be 

manipulated in order to guarantee that they will lead, as far as possible, to an automaton with 
deterministic transitions. 

We may eliminate, from the expressions defining each nonterminal, all constructs that 
cause nondeterministic transitions to appear in the resulting automaton: 

• Explicit empty-string symbols appearing in the expressions will generate empty 
transitions, so we would eliminate them: convert expressions of the form  a(ε | b)c into 
a(c | bc) 

• Explicit nondeterminisms caused by the occurrence of common prefixes among 
alternative expressions may be eliminated by left factorization of the longest possible 
common prefix for the largest set of alternatives, and then, successively factoring 
eventually remaining common prefixes in parentheses: Being a be the longest common 
prefix in   ab1|ab2|...|abn , we rewrite this expression as a (b1| b2|...| bn). 

• Hidden nondeterminisms due to the presence of nonterminals as prefixes in one or more 
of the expressions in a group of alternatives may be handled by replacing the 
nonterminal by the Wirth expression that defines it. Assuming that X→a is the definition 
of X, expressions starting by nonterminal X, like  Xb, will be replaced by  (a)b. 

• Hidden nondeterminisms caused by optional cycles like  {a}  may be first turned explicit 
by rewriting it as  a{a} |ε, and then eliminating the explicit empty string from the 
expression. 

• After every transformation, the resulting expression must be checked for remaining 
nondeterminisms that have to be eliminated. For these ones, select in the expression the 
most local scope in which that nondeterminism is active, then eliminate all factorations 
previously made in that scope of the expression, before reapplying the former rules until 
no more nondeterminisms remain in the expression. 



Mapping a prepared grammar into an automaton  
 

Use one different initial state for each submachine, associated to one corresponding non-
terminal in the grammar. Make the initial state of the starting submachine the initial state of 
the whole automaton. 

All states corresponding to the left ends of those expressions are assigned the same state. 
Each occurrence of a terminal in the expression corresponds to an internal transition 

between two states in the submachine corresponding to the nonterminal being developed. 
Each occurrence of a nonterminal in the expression corresponds to a transition that calls 

the submachine associated to that nonterminal by pushing the next state into the stack and 
transferring control to the initial state of the called submachine. 

States corresponding to the right ends of all expressions representing the syntactical 
options for a nonterminal are considered final states of the corresponding submachine. 

Final states include an empty transition that returns control to the calling submachine. That 
is performed by simply popping the state contained in the top of the stack into the current 
state, so returning control to the calling submachine at the target state of the calling transition. 

Groups of expressions in parentheses or brackets will have two distinguished states: one 
associated to its lefthand extreme and other, to its righthand extreme. The left state  must be 
same state associated to the left extremes of all its expressions, and the states corresponding to 
all right ends of the expressions must converge into the single state associated to the right 
extreme of the group. Denoting an optional syntax, bracketed expressions ask for an extra 
empty transition from the states associated to their lefthand extreme to the one corresponding 
to their righthand extreme. 

Groups of expressions in braces also ask for this empty transitions, but in this case the left 
extreme of each expression is associated to the righthand state of the group, and all states 
associated to their right ends will also converge into the state associated to the right extreme 
of the group, closing the loop. 

 

Adding semantic actions 
 

Semantic routines are needed to perform several functions in any language processor. In 
our case, adding them to a recognizer will allow it to drive them in order to generate code. For 
the Wirth notation, semantic routines will produce as output the transition function of the 
automaton that implements a recognition device for the language defined by the given Wirth 
grammar. 

The semantics of the generation related to the structured pushdown automata from Wirth 
expressions may be resumed as follows:  
 
For each Wirth expression, defining some nonterminal N : 
 

• Start with an empty stack.  
• Initialize state counters: CS= N0 (current state),  NS= N2 (next state to be assigned).  
• Assign N0 to the initial state of the automaton, and N1 to its final state. 
• Push the pair (N0, N1) onto the stack, in order to memorize this assignment for future 

use. 
• Scan the Wirth expression defining N from left to right. For each element in this 

expression, execute the corresponding action A, B, ... , H: 



A. Terminal:  Generate a new transition from CS to NS, consuming Terminal.  
   Assign NS to CS. Increment NS 
B. Nonterminal: Generate a new transition from CS to NS, calling submachine 

Nonterminal.  
 Assign NS to CS. Increment NS (e a pilha?) 
C. | : Inspect the ordered pair (L, R) at the top of the stack. 
 Generate an empty transition from CS to R. Assign L to CS. 
D. ( : Push the pair (CS,NS) onto the stack. 
 Increment NS. 
E.  [ :  Push the pair (CS,NS) onto the stack. 
 Generate an empty transition from CS to NS. Increment NS. 
F. { :  Push the pair (NS,NS) onto the stack. 
 Generate an empty transition from CS to NS. Assign NS to CS. Increment 

NS. 
G.  ), ], } :  Pop the pair (L,R) from the stack. 
 Generate an empty transition from CS to R. Assign R to CS. 
H. ••  :  Pop the ordered pair (L, R) from the stack.  
 Generate an empty transition from CS to R.  

5� An example project 
In order to apply the ideas commented above, we chose a small complete project through 

which many concepts and practical issues may be explored. 
Being rather trivial, lexical analysis issues are not covered. Instead, we study syntactical 

and semantic aspects of the construction of a meta-recognizer by sketching its building it in 
detail. 

 

Lexical analysis 

Lexical analysis are easily addressed as a direct application of finite automata to the 
recognition of word categories in a language. For use in compilers, lexical analyzers are 
expected to perform as finite-state transducers, that extract input symbols from the source 
program, and generates a token for each lexical item found. 

So, a lexical analyzer will have a finite-state automaton for extracting, from the source 
code, strings representing whole lexical items (identifiers, numbers, reserved words, 
punctuation, operators, etc).  

Once a lexical item has been recognized, lexical analyzers classify them in their 
appropriate categories and generate as output a token, consisting of an ordered pair: (class, 
value) where class represents the categories to which belongs the extracted item (for use in 
syntactical analysis), and value represents complementary information needed for semantic 
analysis and code generation. 

Lexical analyzer construction may be reduced to the design of a finite-state automaton that, 
whenever called, extracts from its input stream a maximum-length string that follow any of 
the formation rules for valid lexical items.  

At each final state, when accepting another lexical item, the automaton generates as output 
the corresponding token, consisting of the information on the class to which belongs the 
extracted item, and the corresponding string of input symbols. 



Syntactical recognition 
 

The way we chose for accepting syntax in this experiment has been the standard 
acceptance of an input string by a structured pushdown automaton.  

Being the acceptor formed by a set of finite-state automata, one of these so-called 
submachines is used as a starting submachine, whose initial state is the initial state of the 
whole automaton.  

Starting from its initial state, the automaton performs successive transitions, based on the 
current symbol of the input string and the current state of the automaton. 

As we have seen before, there will be two kinds of transitions: finite-state transitions and 
stack-dependent ones. The finite-state transitions operate just like in the case of finite-state 
automata. There are two situations where stack-dependent transitions will be used, both 
performing empty transitions between submachines (calls and returns) only. 

For each transition, if the set of transitions in the automaton includes a single transition that 
is compatible with its current configuration, that transition will be deterministically executed, 
usually changing the current state and consuming an input symbol. 

The input string is accepted by the automaton if and only if a final state in the automaton is 
reached, with the stack empty after the input stream is fully consumed by successive 
applications of valid transitions. Although it is not mandatory to impose that our stack to be 
empty in final configuration requirements, any other choice would be unnatural as a final 
configuration in our case.  

In deterministic automata, all valid transitions will be unique. In non-deterministic 
automata, there may be several compatible transitions, then the configuration of the 
automaton will evolve non-deterministically, by simultaneously performing all compatible 
transitions in parallel. 

In this case, we define that the input sequence of symbols is accepted by the automaton if 
any of the resulting paths leads to some final state, with the stack empty, when the input string 
is emptied. In any other casem the input string will be rejected. 

 

Syntax description 
 

The start point for this project is a grammar describing the syntax of the Wirth notation, 
stated in the same Wirth notation (consider Terminal and Nonterminal as terminals). 
 
Wirth = Rule { Rule } . 
Rule = Nonterminal “=” Expression “••” . 
Expression = Term  { “ || ”  Term  } . 
Term  = Factor { Factor } . 
Factor = Nonterminal  |  Terminal  | “εε ” |  “(” Expression “)”  |  “[” Expression  “]” |  “{” Expression “}”. 
 
 

We can simplify the former grammar rules by eliminating the non-essential nonterminals 
Rule, Term and Factor, by applying the following steps to the expressions defining Wirth and 
Expression: 
Substitute the occurrences of Rule by its defining expression; then, substitute in the resulting 
expression the occurrences of Term by its defining expression; substitute all occurrences of 
Factor by its defining expression 
The following grammar results, stated in terms of terminals and essential nonterminals only: 



 

Wirth = Nonterminal “=” Expression “••” { Nonterminal “=” Expression “••” } . 
Expression =  
                 Nonterminal | Terminal | “εε ” |  “(” Expression “)” |  “[” Expression  “]” |  “{” Expression  “}”  
           { Nonterminal | Terminal | “εε ” | “(” Expression  “)” |  “[” Expression  “]” |  “{” Expression  “}” }  
  { “ || ”  ( Nonterminal | Terminal | “εε ” | “(” Expression  “)” |  “[” Expression  “]” |  “{” Expression  “}”   
           { Nonterminal | Terminal | “εε ” | “(” Expression “)” |  “[” Expression “]” |  “{” Expression “}”} )}. 
 

Construction of a recognizer for the Wirth Notation 
>From the expressions above, the following structured pushdown automaton may be easily 

constructed manually by first applying our method, then eliminating empty transitions and 
equivalent states, through classical well-known algorithms. 

 
Submachine Wirth (transition-table format):  
 

 
 
 

 
 

 
 
Submachine Wirth (transition-diagram format):  
 
 
 

 
 
 

 

 
 
 
Submachine Expression (transition-table format):  
 
 

 

 

 Nonterminal Expression = ••  
0 (Initial State) 1/X    

1   2/–  
2  3/–   
3    4/ H 

4 (Final State) 1/X    
     

 ( ) [ ] { } | Terminal Nonterminal Expression 
0 (Initial state) 2/D  4/E  6/F   1/A 1/B  

1 (Final state) 2/D  4/E  6/F   0/C 1/A 1/B  

2          3/– 

3  1/G         

4          5/– 

5    1/G       

6          7/– 

7      1/G     

Non-terminal / X 

= 
Expression

. / H  

Non-terminal / 
X Wirth 

W0 W1 W2 W3 W4 



Submachine Expression (transition-diagram format):  
 

|

Expression

( / D

E7

E5

E3

E6

E4

E2

E1E0

Expression

Expression

Expression

Non-terminal / B

Terminal / A

Non-terminal / B

Terminal / A

( / D

[ / E

[ / E

{ / F

{ / F } / G

] / G

)  / G

| / C

 
 

A set of semantic actions are then manually attached to the transitions of the structured 
pushdown automaton, so converting it into a compiler of Wirth grammars into structured 
pushdown automata that accept the languages described by the input grammars.  

In the tables above, we called X the routine that initializes the variables and the stack 
before each nonterminal definition. Routines A, B, ... , H refer to the homonymous routines 
sketched in the preceding section. All these semantic routines are executed whenever the 
corresponding transition is activated during syntax recognition. 

By feeding this automaton with the Wirth expressions we just derived for nonterminals 
Wirth and Expression, the semantic routines are called in the correct order so that it will 
generate an automaton with submachines Wirth and Expression. These submachines, although 
being equivalent to ours, are not the same as the ones shown above, because they present 
many empty transitions and equivalent states. By removing such undesired transitions, it will 
result exactly the automaton we have presented above. 

Pedagogically, this project is twofold: while serving as a base for the study of the 
construction of compilers, by addressing issues on the building of syntax acceptors and 
semantic routines, this project allows introducing concepts and practical aspects concerning 
the automatic generation of parsers for context-free languages, in a very natural form, thus 
abbreviating the exposition of students to those topics, otherwise usually uncovered in most 
courses. 

6� Future Work 
Although adaptive formal devices are still in their beginning as language description tools, 

they have already shown to be effective not only as pedagogical aid in teaching language-
related subjects but also as excellent implementation models. 

Many applications have been devised for adaptive devices, including language recognition 



(adaptive automata), reactive systems description (adaptive statecharts), language generation 
(adaptive grammars), stochastic generative devices (adaptive Markov chains), and artificial 
intelligence applications, especially those related to machine learning. 

Some of the main aspects of the study of those formal devices have been already 
addressed, but there are many others that remains to be explored. 

In the particular case discussed in this article, no adaptive features have been used. We 
explored the hierarchical structure of the formal model, which allowed us to use a unified 
notation for both finite-state and pushdown automata, avoiding unnecessary and time-
consuming teaching of more than one single notation. 

As we mentioned before, a software tool is available that allows one to enter a 
specification of an adaptive automata (with any desired simplifications), from which the 
system automatically builds a simulator for the device being specified. 

Such a tool is very useful for developing new languages, testing existing automata, and 
automatically building language processors from formal specifications. The example included 
in this paper shows in a very simplified form how such a metasystem works. 

An integrated laboratory may be designed to explore this tool as a common framework for 
teaching many important topics in computer science, like: Introduction to computer science, 
formal languages and automata, introduction to compiler writing, programming languages, 
formal specifications of languages, systems programming, the design of sequential devices, 
and many others. 

7� Conclusions 
The approach we have used in the experience related to this paper has been completely 

successful in a number of  aspects: 

• the grammatical notation based on Wirth’s notation is adequate for our purpose since it 
shows to be so close to the corresponding automaton and that a very simple mapping 
algorithm allows us to draw acceptors for the language through very simple 
manipulation of a given grammar. 

• transducers may be obtained by extending such acceptors with an adequate output 
function. By choosing this function conveniently, one may map these acceptors into 
parsers, or produce an object language, or both. 

• the unified notation based on adaptive automata is easy to learn and well-suited for the 
formal definition of acceptors for languages of any Chomsky type 

• adaptive features are all fully processed in a strictly syntactical way, with no need for 
externally-coded routines 

• by exploring  adaptive features, extensible languages may be both defined and 
processed from a single formal definition, always by means of syntactic methods only, 
so providing a clear and easy-to-understand formal definition of those languages 

• by exploring intuitive extensions of already-known simple models, this approach allows 
quick teaching of subjects related to quite complex topics, in a very simple manner, so 
motivating the students to go further into the corresponding theoretical topics  

• by means of the use of this approach and accompanying each lecture with practical 
assignments regarding the next class, understanding of the subject has been significantly 
increased, and teaching speed grew by some 50%, with a simultaneous relative increase 
in the average grade 
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