
Adaptive rule-driven devices - general formulation and case study
João José Neto

Escola Politécnica da USP
e-mail: joao.jose@poli.usp.br

Abstract
A formal device is said to be adaptive whenever its behavior changes
dynamically, in a direct response to its input stimuli, without interference
of external agents, even its users. In order to achieve this feature, adaptive
devices have to be self-modifiable. In other words, any possible changes in
the device’s behavior must be known at their full extent at any step of its
operation in which the changes have to take place. Therefore, adaptive
devices must be able to detect all situations causing possible modifications
and to adequately react by imposing corresponding changes to the device’s
behavior. In this work, devices are considered whose behavior is based on
the operation of subjacent non-adaptive devices that be fully described by
some finite set of rules. An adaptive rule-driven device may be obtained by
attaching adaptive actions to the rules of the subjacent formulation, so that
whenever a rule is applied, the associated adaptive action is activated,
causing the set of rules of the subjacent non-adaptive device to be
correspondingly changed. In this paper a new general formulation is
proposed that unifies the representation and manipulation of adaptive rule-
driven devices and states a common framework for representing and
manipulating them. The main feature of this formulation is that it fully
preserves the nature of the underlying non-adaptive formalism, so that the
adaptive resulting device be easily understood by people familiar to the
subjacent device. For illustration purposes, a two-fold case-study is
presented, describing adaptive decision tables as adaptive rule-driven
devices, and using them for emulating the behavior of a very simple
adaptive automaton, which is in turn another adaptive rule-driven device.
Keywords - adaptive devices, rule-driven formalisms, self-modifying
machines, adaptive decision tables, adaptive automata.

1 Introduction
Despite many adaptive devices have been created and used in the last decade, notations
had not been elaborated in a way that the represented adaptive formalism be as close as
possible to the original non-adaptive underlying formulation. Among several other
reasons, self-modifying formalisms have not been extensively employed, as a
consequence of the complexity of the existing formulations, which make them difficult to
use.
In this work we introduce a general proposal for the formulation of adaptive devices
based on rule-driven subjacent non-adaptive ones. We expect that the proposed
formulation be clear, intuitive and easy to learn, without adding complexity to reading,
writing or interpreting the notations. We also expect that the proposal be general enough,
in the sense that it be insensitive to the underlying non-adaptive formalism, so that all
achieved results remain valid even possibly changing the nature of the subjacent rule-
driven system.

2 (Non-adaptive) Rule-driven devices
Formal state machines are popular mathematical tools used for describing and modeling
actual real life systems. At each stage of their operation, these devices assume some
configuration, which usually comprehends the contents of the whole set of information-
holding elements and the current status of the device. In conjunction with the input
stream yet to be processed, despite how the current configuration was reached, the
device’s configuration fully determines its further behavior. A formal machine operates

by successively moving the device from one configuration to another, in response to
stimuli consumed from their input stream.
Without loss of generality, we may state that such devices start their operation at some
initial configuration that follows well-known fixed restrictions. After having processed
the full input sequence of stimuli, the device reaches some configuration which may
indicate that its whole input stream has been either accepted or rejected. Therefore, we
may split the set of all possible configurations for the device into two partitions: one for
the accepting configurations and the other for the rejecting ones.
A (non-adaptive) rule-driven device is any formal machine whose behavior depends
exclusively on a finite set of rules which map each possible configuration of the device
into a corresponding next configuration. The device is said to be deterministic if and only
if, for any given initial or intermediate configuration and any input stimulus, its defining
set of rules determines one and only one next configuration. The device is non-
deterministic otherwise. Non-deterministic devices allow more than one valid move at
each moment. So, their use requires that all possible next moves be tried as intermediate
steps toward some final accepting configuration. Inefficiencies caused by such trial-and-
error operation usually turn non-deterministic devices inadequate for sequential
implementation. Therefore, in order to achieve efficiency, whenever possible, choosing
deterministic equivalent devices is highly recommended. Let us define ND = (C, NR, S,
c0, A, NA) where:

• ND is some rule-driven device, whose operation is established by a set of rules NR.
• C is the set of all its possible configurations, and c0 ∈ C is its initial configuration.
• S as the (finite) set of all possible events that are valid input stimuli for ND, with ε ∈ S.
• A ⊆ C (resp. F = C−A) is the subset of its accepting (resp. failing) configurations.
• ε denotes “empty”, and represents the null element of the set to which it belongs.
• w = w1 w2 ... wn is a stream of input stimuli, where wk ∈ S−{ε}, k = 1, ... , n with n≥0.
• NA is a (finite) set, with ε ∈ NA, of all possible symbols to be output by ND as side

effects to the application of the rules in NR. In practice, output symbols in NA may be
mapped into procedure calls, so an output generated by applying any rule may be
interpreted as a call to its corresponding procedure.

• NR is the set of rules defining ND by a relation NR ⊆ C×S×C×NA. Rules r∈ NR have
the form r = (ci, s, cj, z), meaning that, in response to any input stimulus s∈ S, r changes
the current configuration ci to cj, consumes s and outputs z∈ NA as a side-effect.

A rule r = (ci, s, cj, z), with r∈ NR; ci,cj∈ C; s∈ S; z∈ NA, is said to be compatible with the
current configuration c if and only if ci=c and s is either empty or equal to the device’s
current input stimulus. In this case, the application of a single compatible rule moves the
device to configuration cj (denoted by ci ⇒s cj) and appends z to its output stream. Note
that s, z or both may be empty. Let ci⇒~ cm, m ≥ 0 denote ci ⇒ε c1 ⇒ε c2 ⇒ε ... ⇒ε cm, an
optional sequence of empty moves. Let ci ⇒~wk cj, denote ci ⇒~ cm ⇒wk cj, an optional
sequence of empty moves followed by a non-empty one consuming the symbol wk. An
input stream w = w1 w2 … wn is said to be accepted by ND when
c0 ⇒~w1 c1 ⇒~w2 ... ⇒~wn cn ⇒~ c (for short, c0 ⇒w c, with c∈ A). Complementarily, w is
said to be rejected by ND when c∈ F. The language described by ND is the set
L(ND) = { w∈ S* | c0 ⇒w c, c∈ A } of all streams w∈ S* that are accepted by ND.

3 Adaptive devices
Define T as a built-in time counter that starts at 0 and is automatically incremented by 1
when a non-null adaptive action is executed. Each value k assumed by T may subscript
the names of time-varying sets. In this case, it selects AD’s operation step k.

A device AD=(ND0, AM) is said to be adaptive whenever, for all operation steps k≥0,
AD follows the behavior of NDk until the execution of some non-null adaptive action
starts its operation step k+1 by changing its set of rules.
At any AD’s operation step k≥0, being NDk the corresponding subjacent device defined
by NRk, the execution of some non-null adaptive action evolves NDk to NDk+1. So, AD
starts its operation step k+1 by creating the set NRk+1 as an edited version of NRk.
Thereafter, AD will follow the behavior of NDk+1 until a further non-null adaptive action
causes another step to start. This procedure iterates until the input stream is fully
processed.
AD starts its operation at c0, with an initial shape AD0=(C0, AR0, S, c0, A, NA, BA, AA).
At step k≥0, an input stimulus (always) moves AD to a next configuration and then starts
its operation step k+1 if and only if a non-adaptive action is executed. So, being AD at
step k, with shape ADk=(Ck, ARk, S, ck, A, NA, BA, AA), the execution of a non-null
adaptive action leads to shape ADk+1=(Ck+1, ARk+1, S, ck+1, A, NA, BA, AA). In this
formulation:

• AD=(ND0, AM) is some adaptive device, given by an initial subjacent device ND0 and
an adaptive mechanism AM.

• NDk is AD’s subjacent non-adaptive device at some operation step k. ND0 is AD’s
initial subjacent device, defined by a set NR0 of non-adaptive rules. By definition, any
non-adaptive rules in any NRk mirror the corresponding adaptive ones in ARk.

• Ck is the set of all possible configurations for ND at step k, and ck∈ Ck is its starting
configuration at step k. For k=0, we have respectively C0, the initial set of valid
configurations, and c0∈ C0, the initial configuration for both ND0 and ND.

• ε (“empty”) denotes the absence of any other valid element of the corresponding set.
• S is the (finite, fixed) set of all possible events that are valid input stimuli for AD

(ε∈ S).
• A ⊆ C (resp. F = C−A) is the subset of its accepting (resp. failing) configurations.
• BA and AA are sets of adaptive actions, both containing the null action (ε ∈ BA∩AA)
• w = w1 w2 ... wn, k = 1, ... , n is a stream of input stimuli, where wk ∈ S −{ε}.
• NA, with ε∈ NA, is a (finite, fixed) set of all possible symbols to be output by AD as

side effects to the application of adaptive rules. Just like in non-adaptive devices, the
output stream may be interpreted as a corresponding sequence of procedure calls.

• ARk is a set of adaptive rules, given by a relation ARk ⊆ BA×C×S×C×NA×AA.
In particular, AR0 defines the initial behavior of AD. Adaptive actions map the current
set of adaptive rules ARk of AD into a new set ARk+1 by adding adaptive rules to ARk.
and/or deleting rules from it. Rules ar∈ ARk have the form ar = (ba, ci, s, cj, z, aa),
meaning that, in response to some input stimulus s∈ S, ar initially executes the adaptive
action ba∈ BA; if the execution of ba eliminates ar from ARk, the execution of ar is
aborted; otherwise, it applies the subjacent non-adaptive rule nr = (ci, s, cj, z) ∈ NRk, as
described before; finally, it executes adaptive action aa∈ AA.

• Define AR as the set of all possible adaptive rules for AD.
• Define NR as the set of all possible subjacent non-adaptive rules for AD.
• AM ⊆ BA×NR×AA, defined for a particular adaptive device AD, is an adaptive

mechanism to be applied at any operation step k to each rule in NRk ⊆ NR. AM must be
such that it operates as a function when applied to any sub-domain NRk ⊆ NR. That
will determine a single pair of adaptive actions to be attached to each non-adaptive
rule.
The set ARk ⊆ AR may be synthesized by collecting all adaptive rules obtained by
merging such pairs of adaptive actions to the corresponding non-adaptive rules in NRk.
Equivalently, we may build NRk by removing all references to adaptive actions from
the rules in ARk.

The algorithm below sketches the overall operation of any rule-driven adaptive device.
1. Set the device at its initial configuration.
2. Set the input stream at its leftmost event.
3. If there are no more events to be processed, then go to step 8

else feed the device by picking the next event to be processed.
4. Choose the next adaptive rule to be applied:

Given the current configuration cT∈ CT and stimulus sT∈ S, extracted from the input
stream not yet processed, search the set NRT for compatible rules, i.e., a set of rules
that may be applied under the current circumstances, and collect them in a set
CRT={ar∈ ART | ar = (ba, cT, s, c, z, aa), s∈ {sT,ε}; c,cT∈ CT; ba∈ BA; aa∈ AA; z∈ NA}
There are three cases to be considered:
• if CRT is empty, no moves at all are allowed for the device (because ART is

incompletely specified), then the input stream is rejected by default.
• if CRT = { ark }for some ark = (bak, cT, s, ck, zk, aak) ∈ ART, then a single rule is

available, for deterministic application. By doing so, the device will reach a well-
defined next configuration cT+1=c.

• if CRT ={ark=(bak, cT, s, ck, zk, aak) | k=1,2,...,m}, then all these m rules are equally
allowed for being non-deterministically applied to the current configuration, so all
of them are applied in parallel to the current configuration, as usual in the
operation of non-deterministic devices. Obviously, in non-parallel environments,
such parallelism must be exhaustively simulated, e.g. by applying some
backtracking strategy.

5. If adaptive action bak is the null adaptive action ε in the rule being applied, then
proceed to step 6, otherwise, apply the adaptive action bak to the current set of rules,
yielding a new intermediate configuration for the device AD. Note that, in some
cases, even the adaptive rule ark being applied may erase itself by executing bak. In
such an extreme case, the application of arp is aborted by returning to step 4.

6. Apply the rule nrk=(cT, s, ck, zk), just as defined by the underlying non-adaptive
device, to the current (intermediate) configuration of AD, yielding another
(intermediate) configuration.

7. If the adaptive action aak in the adaptive rule ark being executed is the null adaptive
action ε, proceed to step 3, otherwise apply aak to the current set of adaptive rules,
finally yielding the next configuration for the device. As in step 5, the execution of
the adaptive action may also erase ark. In this case, however, no further action is
needed.

8. if the current configuration is an accepting configuration, then accept the input
stream, otherwise reject it, and then stop.

4 Example
Decision tables are tools very popular among information systems programmers and
software engineers. Adaptive decision tables constitute an interesting application of the
concept of adaptive devices to the field of information systems. Adaptive decision tables
may be defined as the class of adaptive devices that use the traditional (non-adaptive)
decision tables as their underlying formalism.

4.1 (Non-adaptive) Decision tables
Decision tables may be viewed as tabular tools that encode a set of rules represented by
conditions and corresponding actions to be executed when those conditions are matched.
In typical decision tables (fig. 1) rules are represented as columns while rows are
employed to encode conditions (condition rows) and actions (action rows). In each rule,
marked cells corresponding to each condition row refer to relevant conditions to be
tested, and indicate whether that condition is to be tested for true or false (non-marked
conditions are not to be tested), while marked cells in action rows indicate that the
corresponding action is expected to be performed as a response to a match in all marked
conditions.

Rules ↓
Rule no → 1 2 3 4 5 6 7 8 9

c1 T T F - - F T T -
Condition c2 - T T - - F - F T

rows ...
cn - - - - T - F F -

r1 F T T T F F F F T
Action r2 F F T T F T T F F
rows ...

rm F F F F T F F T T

Fig. 1 - Structure of a typical non-adaptive decision table.

Rules in the decision table are encoded as follows:

• Condition rows: cells of the rule corresponding to conditions to be tested are filled
with a boolean value (True or False) corresponding to the particular value to be tested
for that condition. A special null mark (-) indicates that the associated condition is
not to be tested.

• Action rows: cells of the rule corresponding to actions to be performed are filled with
the value True. For all actions not to be executed, that cell is filled with False.

The operation of such non-adaptive decision tables is quite straightforward:

1. First, the status of the system is checked against the combinations of conditions stated
in each of the rules encoded in the table.

2. If no rule matches the current status, then no action is executed at all.
3. If a single rule matches the current status, then we have a deterministic choice, so the

matching rule is selected to be applied.
4. If more than one rule match the current status, then we face a non-deterministic

situation. Consequently, all those rules are to be applied in parallel. In practice,
parallelism may be simulated, e.g. by some exhaustive backtracking strategy.

5. The selected rule is then applied by executing the set of all actions indicated with a
boolean value True in the cells of the rule corresponding to action rows.

6. Once the selected rule has been applied, the decision table gets ready to be used again.

For instance, let us assume that condition c1 is False and condition c2 is True. In our
decision table, obviously only rule 3 (shaded in fig.1) matches such status. Therefore, in
this case the decision table will activate actions ra1 and ra2 for execution, as we may
easily observe by inspecting the action rows specified in rule 3. Note that if rule 1 had
been selected instead, no actions would have been called at all, since all action rows in

rule 1 are filled with False. It is obvious from this simple example that decision tables are
very easy to design and use.
Unfortunately, these classical devices are static, in the sense that their individual rules
are all predefined and never change along the whole operation of the device.
Furthermore, the set of rules defining classical decision tables are not allowed to change,
so in classical decision tables there is no dynamic inclusion or exclusion of rules. In
order to provide more flexibility to this useful and popular tool, we may use it as the
basic underlying non-adaptive formalism for building a far more powerful adaptive
device.

4.2 Adaptive decision tables
Adaptive decision tables (fig. 2) are easily obtained from conventional ones by adding to
them further rows encoding the adaptive actions to be performed before (“before-”
adaptive action rows) and after the rule is applied (“after-” adaptive action rows).

Rules ↓
Rule no → 1 2 3 4 5 6 7 8 9

c1 T T F - - F T T -
Condition c2 - T T - - F - F T

rows ...
cn - - - - T - F F -

z1 F T T T F F F F T
Action z2 F F T T F T T F F
rows ...

zm F F F F T F F T T

“before-” ba1 T F F F F F F T F
Adaptive ba2 F F T F T F F T F

Action ...
rows bap F T F F F F F F F

“after-” aa1 F T T F F F F T F
Adaptive aa2 F F F T F T F T F

Action ...
rows aaq F F F F F T F T F

Fig. 2 - Structure of an adaptive decision table based on the non-adaptive
table in fig. 1 as its subjacent device.

When adaptive actions are executed, the table usually has its set of rules modified,
therefore correspondingly changing the number of columns in the adaptive decision
table. Note that with the chosen layout, however, the number of rows of the adaptive
decision tables remains unchanged, since adaptive actions do not modify any of the items
encoded in their rows. This property is truly valuable for implementation purposes.
For operating such an adaptive device, the subjacent non-adaptive decision table is first
used for determining the rule(s) matching the current situation of the condition
predicates. Then, the selected adaptive rule is performed by executing the indicated
“before-” adaptive actions, then applying the subjacent non-adaptive rule, and finally
executing the indicated “after-” adaptive actions.
In some cases, when executing its adaptive actions, some adaptive rule being applied may
even exclude itself. Whenever the currently used rule happen to be eliminated by its own
before- adaptive action, its application is aborted, and the next rule to be applied is
elected from the resulting set of rules.
The aspect of an adaptive decision table is shown in the example depicted ahead. The
upper half of the table in the figure corresponds to the corresponding underlying non-
adaptive decision table, while its lower half represents the attached adaptive mechanism
Note that by associating adaptive actions in this way to the usual formulation of decision
tables, no substantial changes are introduced for the user, since at first glance adaptive
actions might be simply interpreted as additional standard actions to be executed in
response to some particular matching of conditions. From a conceptual viewpoint,
however, the execution of adaptive actions has significantly deeper implications, since

their execution affects the decision table itself, allowing changes to be imposed to its
own behavior.

4.3 Application
In the table illustrated in fig. 2 above, adaptive rule 3 is marked with a shaded
background.
It is activated when condition c1 is False and condition c2 is True, regardless to the other
conditions. Under this situation, the application of this adaptive rule operates as follows:
1. Execute adaptive action b2 (which will probably change the rule set of the device)

before the subjacent non-adaptive rule is applied.
2. Apply the underlying rule: actions r1 and r2 are performed just as they would be

executed in the classical non-adaptive case.
3. Execute adaptive action a1 (probably changing the decision table again) after the

application of the underlying non-adaptive rule.
4.3.1 Adaptive functions
Adaptive actions may be defined as abstractions called adaptive functions, in a way
correspondingly similar to that of function calls and function declarations in a usual
programming language. Adaptive functions define generic abstractions while adaptive
actions correspond to adaptive function specific calls. Adaptive actions customize the
corresponding adaptive function abstraction by assigning arguments to their formal
parameters according to each particular needs.
4.3.2 Specifying adaptive functions
In order to state exactly how each adaptive action is expected to operate, we need to
provide some further information: the name of the corresponding adaptive function, the
set of parameters to be used, the elementary adaptive actions to be applied and the exact
way parameters, variables and generators are to be employed.
Thus, the specification of adaptive functions must include the following items:
• name: a symbolic name, used for referencing adaptive functions. When calling

adaptive actions, the name of the corresponding adaptive function is used to select
among available adaptive actions.

• (formal) parameters: a set of symbolic names that are used for referencing values
passed as arguments to an adaptive function at the time it is called. All instances of
the formal symbolic parameters, once replaced with the values associated to their
corresponding arguments within the body of the adaptive function, may not be further
modified throughout the execution of the adaptive function.

• variables: these are symbolic names used for holding values resulting from the
application of some rule-searching elementary adaptive function. Variables are filled
only once during the execution of an adaptive function, and its value remain
unchanged during the execution of the adaptive function.

• generators: these elements are symbolic names that refer to new values each time they
are used. Once generators are filled with some value, they do not change any more
while the adaptive function is active.

• body: the body of an adaptive function encodes all the editing operations needed to
make the desired changes to the current set of rules of the decision table.
Elementary adaptive actions are editing primitives that allow either testing the rule set
or specifying single modifications to the rules of an adaptive decision table.
The body of an adaptive decision table consists essentially of a set of elementary
adaptive actions.
There are three kinds of elementary adaptive actions that may be combined within the
body of an adaptive function in order to specify its operation:
• rule-searching elementary adaptive actions: these actions do not modify the set of

rules, but allow searching the rule set for rules matching a given pattern.
• rule-erasing elementary adaptive actions: these actions remove rules that match a

given pattern from the current set of rules.

• rule-inserting elementary adaptive actions: these actions allow adding a rule with
a specified pattern to the current set of rules.

4.3.3 Encoding adaptive functions
In order to encode adaptive functions, a format must be chosen for each of the
component items listed above. It should be convenient that the format be similar to that
of adaptive decision tables. We chose to include the specification of adaptive functions
as part of the adaptive decision table itself, since adaptive functions are meaningless
outside the environment they act on. The format adopted for encoding adaptive functions
within adaptive decision tables will be informally introduced through the following
example.
4.3.4 Overall format for adaptive decision tables
Adaptive decision tables as defined here will be drawn in an extension of the notation
already discussed for non-adaptive tables. So, the subjacent decision table is represented
as usual and the adaptive mechanism is added by inserting the following elements in the
rows:
• one heading row containing a tag for specifying the type of each column (H= header

of the specification of an adaptive function; +, -, ? = including, excluding, inspecting
elementary adaptive action; S= starting rule; R= normal rule; E= ending rule)

• one extra row for the names of each adaptive function used
• one extra row for the names of each parameter, variable or generator used by the

adaptive functions
• in the example below, for better legibility of the table, assignments and comparisons

referring to variables used by standard (non-adaptive) actions are denoted explicitly
and not as function calls

Similarly, the following additions have been done to the columns of the table:
• one header column for each adaptive function (tag = H) starting the specification of

the adaptive function. This header must include a tag B or A in the cell corresponding
to the name of the before- or after- adaptive functions, respectively, a tag P in each
cell corresponding to a formal parameter, a tag V in each cell corresponding to a
variable and a tag G in each cell corresponding to a generator. Each header column is
followed by a set of columns related to elementary adaptive actions. This set is
finished when a starting rule or another header is found.

• in columns denoting elementary adaptive actions (tags +, - or ?) the cells
corresponding to conditions are filled with the value the condition is to be tested
against; cells corresponding to actions to be executed are marked; cells corresponding
to assignments are filled with the value to be assigned. Required adaptive actions are
marked, and the cells corresponding to their parameters are filled with a constant or
the name of a variable, a parameter or a generator to be passed as an argument.
Homonymous parameters must be avoided between adaptive functions called within
the same rule.

• one column for the starting rule (tag = S) of the adaptive automaton, standing for the
rule to be applied before any other. In this column, actions are activated in order to
initialize all initial operating conditions for the device. A set of normal rules follow
this column, ending with the ending rule, which closes the specification of the table.

• columns denoting normal rules (tag = R) specify all rules defining the decision table.
Each normal rule is specified by filling condition cells to be tested with constants or
names of variables, generators or formal parameters; actions cells and adaptive
actions are specified just as described above for elementary adaptive actions.

• the single column denoting the ending rule (tag = E) serves as a delimiter for the set
of current rules in the adaptive decision table, and represents only a logical marker.

4.3.5 Illustrative Example
Let us illustrate the encoding of adaptive functions by means of a low-complexity
adaptive example. It is shown as a complete adaptive decision table in fig. 3. In this

example, we define two adaptive functions: The first adaptive function is named X and
has two formal parameters, p1 and p2, and uses one generator, g1, while the second one,
Y, has one formal parameter, q1. Note that no variables are used in this example, but if
there were variables, new corresponding rows would have been added, since they are
denoted and used in the same way parameters and generators are.

Tag→ H + + + + - H - + S R R R R R R R R E

condition state = p1 g1 g1 g1 p1 q1 q1 “I” “I” “J” “J” “J” “J” “K” “L”
subjacent input = p2 “λ” “d” “

”
p2 “

”
“

”
“λ” “λ” “d” “

”

decision state := g1 “J” “J” “L” “J” “L” “K” “I” “J” “J” “J” “L”
table action get (input)

Accept :=

function X B
adaptive names Y A

p1 P g1 g1 p1 “I”
functions other p2 P “λ” “d” p2 “λ”

names q1 g1 P q1 “J”
g1 G

Figure 3 - An illustrative adaptive decision table emulating the behavior of a very
simple adaptive automaton that accepts identifiers and memorizes them.

Other features that were not used in this example are the calls to before- and after-
adaptive actions within the adaptive functions. If they were present, additional
appropriately tagged columns would have been included for representing them.
The very simple adaptive decision table in fig. 3 illustrates the encoding of the
information needed for implementing a simple adaptive device.
Not all possible options of the model have been explored, but the given illustration is
complex enough to be used as a guide for developing other projects with this technique.
This example illustrates the use of adaptive decision tables as an alternative way to
implement adaptive automata-based logic. Applications of adaptive automata have been
shown in [Jos00]. The target of this decision table is to read an input sequence formed of
letters and digits and to collect identifiers formed in the usual way, say, as a non-empty
sequence of letters and digits starting with a letter, and ending with the special end-
marker . Whenever a new identifier is found, the adaptive decision table is adequately
modified so that the identifier be thereafter registered as an already known one, while
already known identifiers are simply accepted by the table without modifying it. So, it
operates as a purely syntactic name-collecting device for which all needed available
information is permanently encoded in the adaptive decision table.
Further descriptions of the operation of similar adaptive devices are found in [Jos93].
4.3.6 A step-by-step operation of the illustrative device

5 Previous experience with adaptive techniques
Adaptive technology concerns to techniques, methods and disciplines referring to actual
practical applications of adaptive devices. Historically, adaptive devices emerged from
the field of formal languages and automata. Consequently, early applications of such
devices have been in the area of rigorous definition of formal and computer languages. In
this area, we may list the works by Burshtein [Bur90], Shutt, Cabasino [Cab92],
Rubinstein [Rub95b], Neto [Jos94] and Iwai [Iwa00]. For example, adaptive automata
have been proposed as a practical formalism for the representation of languages with
context dependencies [Rub95b], [Jos94]. On another hand, adaptive grammars were also
introduced as generative devices whose operation also allows their use in the rigorous
definition of context-dependent languages [Rub95b], Iwai [Iwa00].
An early meta-system based on adaptive automata has been proposed and implemented
which allowed many tests to be carried out in a comfortable form [Per97]. This work was
a practical proof that adaptive engines might be useful and not so much difficult to
design and implement. Burshtiein [Bur90], Shutt [Shu93] and Christiansen [Chr90] have

proposed adaptive grammatical devices whose operation reminds two-level Von
Wijngaarden grammars [Wij75], with enough power to express complex type-1 and type-
0 languages. For use in the specification and analysis of real time reactive systems, we
also find some works based on adaptive versions of classical statecharts [Alm95]. As an
evolution of this work, in addition to reactive aspects, mechanisms based on Petri Nets
have been added to adaptive statecharts for explicit analysis of synchronization aspects
of concurrent adaptive systems [San97].
Another extremely interesting manifestation of the power and practicality of adaptive
devices for the specification and implementation of complex systems has been the
formulation and use of Adaptive Markov chains, which have been very successfully used
in the design and physical implementation of a computer music-generating system
[Bas99]. Adaptive devices are also being tested in the field of decision-making systems.
An adaptive automata-powered system prototype was implemented as a tool to be used in
the automatic generation and selection of solutions for problems with high computational
complexity.
Artificial intelligence is a field that may be strongly benefited by adaptive technology,
since adaptive devices have a built-in mechanism for acquiring, representing and
manipulating knowledge. Although not been actually implemented, a proposal has been
made for the application of adaptive automata in computer education, as a learning
mechanism of a computer-aided tutoring system and as a model of the student’s progress
in such tutoring systems. So, learning is a natural feature shared by all adaptive devices.
In particular, a small experiment with regular languages has been reported that shows the
potential of adaptive automata as a good device for constructing grammar inference
systems [Jos98]. Another area in which adaptive devices showed their strength is the
specification and processing of natural languages. One of the works in this field
employed adaptive automata as the main mechanism of an automatic tagging system for
texts in Portuguese language. Further works are being currently developed in this
direction, with many good intermediate results in the representation of syntactical
context-dependent features of natural languages. Simulation and modeling of intelligent
systems are also concrete applications of adaptive formalisms, as it was illustrated in the
description of the control mechanism of an intelligent autonomous vehicle that collects
information from its environment and builds a map for easier navigation. Many other
applications for adaptive devices are possible in several fields. They must be extensively
explored through the well-succeeded search for simple and efficient alternative ways to
perform complex computation tasks.
6 Conclusions
As a result of this work, we have achieved, for adaptive devices, a formulation in which
nothing beside the formal adaptive mechanisms is introduced, giving the proposed
formulation the character of a simple extension of the underlying non-adaptive device.
So, the integrity and even the intuition of the underlying formulation in which the
adaptive device is based are preserved, as well as all their properties.
Consequently, after getting familiarized with the concept of adaptive devices, users have
no extra need of learning further concepts and notations, so they are free for using
already designed and tested non-adaptive devices as a basis for easily building adaptive
versions.
From another viewpoint, with the proposed formulation users may directly identify the
underlying non-adaptive device at any moment during the operation of an adaptive
device, so simplifying its debugging effort and increasing the comprehension of the
adaptive device by its designers. Our proposal has a very clean formulation, allowing the
user to be permanently aware of all phenomena concerning the underlying mechanism.
No new notations or concepts are introduced, except those involving adaptive features,
therefore, our proposal offers a formulation that is indeed intuitive and easy to learn. It is
also general to a large extent, since it does not depend on the nature of the underlying

non-adaptive formalism chosen.
We expect that this simple contribution encourage not only the revisiting and use of
existent self-modifying formalisms, but also the formulation of new adaptive devices for
solving problems that are hard to solve with usual non-adaptive tools.

7 References (items marked with asterisk are available in Portuguese only)
[Alm95]* ALMEIDA JUNIOR, J.R. STAD - Uma ferramenta para representação e
simulação de sistemas através de statecharts adaptativos. São Paulo 1995, 202p. Doctoral
Thesis. Escola Politécnica, Universidade de São Paulo.
[Bas99] BASSETO, B. A.; JOSÉ NETO, J. A stochastic musical composer based on
adaptive algorithms. Anais do XIX Congresso Nacional da Sociedade Brasileira de
Computação. SBC-99 PUC-Rio, Vol 3, pp105-13, 19 a 23 de julho de 1999
[Bur90] BURSHTEYN, B. Generation and recognition of formal languages by
modifiable grammars. ACM SIGPLAN Notices, v.25, n.12, p.45-53, 1990.
[Cab92] CABASINO, S.; PAOLUCCI, P.S.; TODESCO, G.M. Dynamic parsers and
evolving grammars. ACM SIGPLAN Notices, v.27, n.11, p.39-48, 1992.
[Iwa00]* IWAI, M. K. Um formalismo gramatical adaptativo para linguagens
dependentes de contexto. São Paulo 2000, 191p. Doctoral Thesis. Escola Politécnica,
Universidade de São Paulo.
[Jos93]* JOSÉ NETO, J. Contribuição à metodologia de construção de compiladores.
São Paulo, 1993, 272p. Thesis (Livre-Docência) Escola Politécnica, Universidade de São
Paulo.
[Jos94] JOSÉ NETO, J. Adaptive automata for context-dependent languages. ACM
SIGPLAN Notices, v.29, n.9, p.115-24, 1994.
[Jos98] JOSÉ NETO, J.; IWAI, M.K. Adaptive automata for syntax learning. XXIV
Conferencia Latinoamericana de Informática CLEI’98, Quito - Ecuador, Centro
Latinoamericano de Estudios em Informatica, Pontificia Universidad Católica Del
Ecuador, tomo 1, pp.135-146. 19 a 23 de Outubro de 1998
[Jos00] JOSÉ NETO, J. Solving Complex Problems Efficiently with Adaptive Automata.
CIAA 2000 - Fifth International Conference on Implementation and Application of
Automata, July 2000 - London, Ontario, Canada
[Per97]* PEREIRA, J.C.D; JOSÉ NETO, J. Um ambiente de desenvolvimento de
reconhecedores sintáticos baseados em autômatos adaptativos. II Brazilian Symposium
on Programming Languages (SBLP'97), 3-5 September 1997, Institute of Computing,
State University of Campinas, Campinas, SP, Brazil, pp.139-50
[Rub95b] RUBINSTEIN, R.S.; SHUTT. J.N. Self-modifying finite automata: An

introduction, Information processing letters, v.56, n.4, 24, p.185-90, 1995.
[San97]* SANTOS, J.M.N. Um formalismo adaptativo com mecanismos de
sincronização para aplicações concorrentes. São Paulo, 1997, 98p. M.Sc. Dissertation
Escola Politécnica, Universidade de São Paulo.
[Shu93] SHUTT, J.N. Recursive adaptable grammar. M.S. Thesis, Computer Science
Department, Worcester Polytecnic Institute, Worcester Massachusetts, 140p, 1993.
[Wij75] WIJNGAARDEN, A.V., et al, Revised report on the Algorithmic Language
Algol 68, Acta Informatica, v.5, n.1-3, p.1-236, 1975.

