
Using Adaptive Automata in a Multi-paradigm
Programming Environment

João José Neto and Aparecido Valdemir de Freitas
Escola Politécnica da Universidade de São Paulo

Depto. de Engenharia de Computação e Sistemas Digitais
Av. Prof. Luciano Gualberto, trav. 3, 158 – Cidade Universitária

S. Paulo – Brasil
joao.jose@poli.usp.br and avfreitas@imes.com.br

ABSTRACT
In this paper the architecture of an experimental multi-
paradigmatic programming environment is sketched,
showing how its parts combine together with application
modules in order to perform the integration of program
modules written in different programming languages and
paradigms. Adaptive automata are special self-modifying
formal state machines used as a design and
implementation tool in the representation of complex
systems. Adaptive automata have been proven to have the
same formal power as Turing Machines. Therefore, at
least in theory, arbitrarily complex systems may be
modeled with adaptive automata. The present work briefly
introduces such formal tool and presents case studies
showing how to use them in two very different situations:
the first one, in the name management module of a multi-
paradigmatic and multi-language programming
environment, and the second one, in an application
program implementing an adaptive automaton that accepts
a context-sensitive language.

KEY WORDS

multi-language programming, multi-paradigm
environment, adaptive automata.

1. INTRODUCTION
Existing programming paradigms usually adhere to
particular classes of problems. In order to handle complex
and interdisciplinary problem, it should be convenient to
use more than one paradigm in the application. [1] Multi-
paradigm environments may be used to allow users to
handle different pieces of programs, written in a variety of
paradigms and styles without leaving their programming
environment. [2,3].
The same idea applies for maintenance tasks in which
existing programs are to be modified or extended in their
functionality. Then tasks usually involve inserting or

substituting program parts with new pieces of code,
written in more than one language.
For instance, by using the logical programming
paradigms, in some module of its application
programmers state them in terms of rules, facts, and a
goal. Such an approach adheres strongly to declarative-
style implementation of that module. [4]
In single-language programs, programmers model the
solutions of problems by using constructs available in the
implementation language. When such a language does not
adhere to the needs of the problem being solved, the
programmer may have troubles when trying to map the
chosen solution into its syntactical constructs.
Therefore, the lack of a multi-paradigmatic programming
environment or the non-availability of a language
appropriate to solve a specific problem will force
programmers to simulate constructs that are absent in the
chosen available language. [5]
In our proposal, a set of primitive functions is made
available for the application process to call.
Applications are made up of a set of processes that
interact with the programming environment by means of
system calls and information exchanges.
The proposed environment should manage all resources
needed to execute the multi-paradigmatic application, e.g.
the allocation and management of shared memory and
name handling for variables and data areas.
By means of synchronizing and communication
mechanisms, the environment assures the consistence of
shared data concurrently referenced by processes.
Garbage collection and resource retrieving are also
housekeeping functions that must be provided by the
environment. [3]
In our proposal, multi-paradigmatic applications are run
under our programming environment, which provides all
the run-time facilities mentioned above.

mailto:joao.jose@poli.usp.br
mailto:avfreitas@imes.com.br

This paper presents an implementation proposal for a
programming environment that provides the system calls
that are appropriate to the interoperability among the
application parts.
Adaptive automata are introduced as a subjacent formal
technique used, for illustration purposes, both in the
implementation of one of the modules of our environment
and as an application case study.
The first illustrative application describes an adaptive
implementation of one environment’s modules and the
second one, a simple program running under our
environment.

2. ADAPTIVE AUTOMATA
Adaptive automata is briefly introduced in this section in
order to allow the reader to understand the mechanism
chosen for the implementation of our system’s name
manager. Details on the formalism and its properties are
available in [6].
Regular and Context Free languages are structurally
simple, and may be easily accepted by popular models,
e.g. finite-state and pushdown automata, respectively. [7]
Structured pushdown automata [8] are special forms of
general pushdown automata that operate as a set of
mutually recursive finite-state-like sub-machines. In this
model, a pushdown store is used for holding return states
whenever a submachine calls another one. This
arrangement is particularly useful for improving efficiency
and readability, and is employed as an underlying model
for adaptive automata.
Unfortunately, there are useful languages that are not
suitable to be accepted by structured pushdown automata.
Adaptive automata have been proposed as a general
formalism that has Turing-machine power, so they have
power enough to accept virtually any language, despite its
complexity.
So, context-dependent languages may be modeled by
adaptive automata, which make use of the so-called
adaptive rules in order to dynamically modify the set of
rules defining the automation.
Most programming and natural languages may be
described by means of context-sensitive formalisms, such
as context-dependent grammars, Turing Machines, two-
level grammars, attribute grammars and many others.
Adaptive automata [6] and adaptive grammars [11] have
been developed in such a way that complex languages be
described and accepted by means of formal models whose
operation is similar to that of structured pushdown
automata.
While no context-dependencies are exercised by the
sentence being recognized, adaptive automata operate as a
structured pushdown automaton.

Whenever any context dependency is detected, a self-
modifying adaptive action is performed which may change
the current set of rules defining the adaptive automation.
Afterwards, the adaptive device will use the newly
obtained set of states and transitions, which may
drastically change the automaton’s behavior in some
cases.
The self-modifying approach showed by adaptive
formalisms allows us to propose a new paradigm for
software construction, which handles in a natural way the
incrementally-changing behavior of some complex
systems, e.g. intelligent (learning) software.
In order to illustrate the operation of adaptive automata,
an example is given below for the implementation of an
acceptor for the context-dependent language anbncn , n > 0.
(sentences: abc, aabbcc, aaabbbccc,…)
Initially the adaptive automaton has the shape depicted in
Fig-1.

Fig-1 Adaptive automaton for anbncn

Adaptive action A is responsible for modifying the shape
of the automaton. Therefore in response to the receipt of
each token “a” in the prefix of the sentence being
accepted.
The adaptive automaton will add and eliminate adequate
states and transitions in order to increment by 1 the
number of both “b”’s and “c”’s accepted in sequence by
the current set of transitions in the automaton.
An illustrating example of step-by-step use of the
automaton above is the recognition of the sentence
“aaabbbccc”.
After consuming the first “a”, the automaton evolves from
state 0 to state 1 and remains unchanged (no adaptive
action is executed in this transition).
After consuming the second “a”, it executes the adaptive
transition that brings it back to state 1, and executes
adaptive action A, which changes the shape of the
automaton to the configuration in Fig-2.

Fig.2 – Configuration after consuming “aa”

The next symbol “a” is then consumed and a similar
operation is executed, resulting the configuration in Fig-3.

Fig.3 – Configuration after consuming “aaa”

The sentence may then be fully consumed by the
automaton in this configuration, since no further adaptive
actions are executed by the remaining transitions: b (1→
3), b (3→ 5), b (5→ 6), b (6→ 4), c (4→ 2), c (2→ 9),
and final state 9 is reached after full consumption of the
input sentence.

3. A PROPOSAL FOR OUR MULTI-
PARADIGM ENVIRONMENT

In this environment, multi-paradigm applications are
structured as sets of processes, each corresponding to a
different module. Each module may be written in different
languages or paradigms. Some functions, implemented as
system calls, are provided in order to integrate
components. Concurrency is handled through a message-
passing scheme and synchronization primitives. [9]
By allowing the creation of new processes and their
synchronization, the environment also provides process
control management.
With such an arrangement, it is advisable that applicatives
be structured in such a way that each of its modules be
responsible for some well-defined activity. Programmers
must adequately insert system calls in order to guarantee
proper execution flow.
Data are also exchanged by means of a shared memory
scheme whose management is performed by our
environment.
Explicit data transfers may be needed among processes.
Our environment automatically provides the allocation of
data transfer areas. System calls allow users to inform the
system on the source, destination and nature of the data to
be transferred.
In order to keep track of the names needed to identify
such data areas, the system uses the name manager
described in section 4 and provides an adequate transfer
protocol for the information which to be handled.
Data type compatibility is assured by this exchange
mechanism by means of automatic format-conversion
operations provided by our environment.
Of course, an adequate format must be chosen in order to
guarantee proper data exchange among modules
developed in different programming languages, since the
corresponding abstract machines may work with different
data representations.

In the present work, a simplification was made in order to
reduce the complexity of our prototype: no complex data
types are supported, but a string-passing mechanism has
been chosen instead, since, without loss of generality, any
data type may somehow be represented in string notation.
Anyway, all data are stored with an accompanying tag
indicating the type it belongs to, for type-checking
purposes at run-time.
From the implementation viewpoint, our environment first
performs all needed allocations of shared resources (e.g.
shared memory, system processes). Afterwards, control is
passed to the application and the environment sleeps until
some request is issued by the application (e.g. data
transfers, control requests, program activates, process
termination, etc.)
The data-transfer operations provided by our environment
are listed below:
• heap writing (updating): a statically allocated named

data block is registered into a shared memory space,
and its name is kept by the environment by the name
manager described in section 4.

• heap reading (non-destructive): a named data block is
retrieved from the heap without changing its contents.

• writing into an ordered dynamically allocated data
structure: a named data block is kept by the
environment’s name manager. Application processes
may choose the ordering criterion to be followed by
the retrieving operations.

• retrieving data from an ordered data structure: The
dynamic data area is searched according to the proper
ordering criterion (e.g. by name) for the specified
datum to be retrieved, and the data item is erased from
the data structure. A garbage collection procedure is
used for housekeeping.

• setting, resetting and switching the value of system
boolean variables: these operations allow
programmers to use boolean flags for controlling the
execution of their code. This flag data area is static,
and their reading is not destructive.

Type checking is performed in a very simple way, so no
type mixing is allowed in our current prototype. However,
future versions should implement type checking and type
conversion, under user’s control.
From the operational point of view, the naming and type
checking mechanisms are very similar to link-editing
operations performed by the system.

Dynamic link-edition is also available in our prototype
through the use of a set of calls to the environment system
primitives that are responsible for import and export
operations (whenever an application process needs to
transfer data, these primitives are activated, and the
corresponding data and name mapping is performed by
the environment).

4. AN ADAPTIVE DESIGN FOR THE
NAME MANAGER

The information exchange among different processes of
the application system in our environment is more easily
and securely performed with the aid of the environment’s
primitive operations.
Such interchange is provided by a parameter-passing
mechanism that allows any of the modules of the
applicative on the correct way data must be referred to.
In other words, the parameter-passing mechanism allow to
specify how each data block is identified and tagged, so
the environment is able avoid improper operations to be
executed on them. (although this type-checking
mechanism may be easily implemented, it has not been yet
added to our running prototype).
This scheme creates a set of global names to be used by
all modules within the application program. Obviously,
such names must be unique in the system, so our
environment avoids name duplication. Therefore, every
data associated to one of these global names must be
referenced as a pair (global name, value). Types may be
retrieved from the data representation, since all stored
data have an associated tag that tells its corresponding
type.
In order to design an adaptive implementation for our
name manager, adaptive automata have been used.
Obviously, there are many other ways to implement name
managers. Our option for an adaptive design has been
made mostly for illustrating how adaptive techniques may
be used in practical problem resolution
In our adaptive design, sequence of symbols in valid
names corresponds, in an adaptive automaton, to possible
paths from its initial state to any of its final states. Each
transition in this automaton consumes the corresponding
symbol from the input sequence. Common prefixes share
the corresponding transitions of the automaton. Prefixes
ending in any non-final state are not associated to valid
names. All final states are tagged, indicating the
corresponding name type. A value of the proper type is
also associated to this state.
Being an adaptive device, our automaton will evolve
during its operation, so that, for all names it handles,
prefixes accepted by the existing transitions will not affect
the shape of the automaton, while symbols for which no
path is found in the current automaton will create the
lacking transition, so the automaton will evolve by adding
new transitions in order to accept the new sequence
thereafter.
Therefore, throughout the operation of our environment,
this adaptive automaton will represent all valid active
names in the system.
Names not needed anymore are excluded from the
automaton by searching the associated path backwards,
for states with more than one departing transition

(consider final states as having a special extra departing
transition), and eliminate all transitions with only one
departing transition. [10]
The following example illustrates how the name manager
works. Starting from a single non-final state without any
departing transitions, this adaptive automaton accepts
sequences of letters, and incorporates transitions as
needed to add the currently accepted sequence to the set
of valid names in the system.
In order to achieve such a behavior, all symbols in the
name that have a corresponding consuming transition in
the automaton will not change its shape, while all symbols
not corresponding to existent consuming transitions will
add such a transition to the automaton, and will also
prepare the new path to accept new foreign suffixes.
The resulting data structure depicted by this automaton is,
of course, a growing tree whose root node is the initial
state of the adaptive automaton, and its final states
correspond to the leaves of the tree. The sequence of
figures 4,5,6 and 7 illustrate the growth of this tree-shaped
name automaton after accepting the names, abc, ad and
ab, respectively.

Fig.4 – Initial Situation

Fig. 5 – Situation after consuming the name abc

Fig. 6 – Situation after consuming abc, ad

Fig. 7 – Situation after consuming abc, ad, ab

5. RUNNING A MULTIPARADIGMATIC
ADAPTIVE APPLICATION UNDER
OUR ENVIRONMENT

In this simple illustrating example, a multi-paradigmatic
implementation of the adaptive automaton described in
section 2 is shown, running under our environment
prototype. The overall structure of this application is
sketched in Fig. 8.

Besides the system modules already described in section
3, and the name manager described in section 4, the
functionality and structure of the modules that compose
the application program are described in this section.
In this case study on the implementation of adaptive
automata, a multi-paradigm and multi-language program
has been developed for running under our environment.
Three major modules have been developed: an
imperative-paradigm module, for interfacing purposes; a
functional-paradigm, for the static part of the simulation
process; and a logical-paradigm, for the dynamic part of
the simulation process.
Shared memory is used for holding data that are used by
more than one module. The imperative module of the
program operates as an interface between the program
and the external environment.
It is responsible for: acquiring data from input files or
devices; analyzing the input; decomposing it into
elementary segments classified by category; and
performing formatting and printing operations.
It is also responsible by the lexical analysis of the input
stream, and by feeding the functional module with the
tokens extracted from the input media whenever needed.

Other operations, such as collecting statistical
information, generating traces of the operation, and
performing control functions have been included in this
module as well.
The imperative module also reads from an input device
the description of the automaton to be simulated, and
stores it into a shared area for being interpreted by the
functional module, and modified by the logical module.

The functional module of the program ha
to simulate all basic non-adaptive o
automaton being implemented. It imple
interpreter of a set of rules describin
automaton to be simulated.
This description may either be always the
change from run to run. So, in the
description of the desired automaton mu
to starting the simulation. This function
the imperative module, which passes the
from the input) to the functional module,
simulation to begin.
Simulation operates conventionally by
description for rules that adhere
configuration of the automaton and to the
be processed. Once a rule is selected, it
algorithm and the result is a new confi
automaton. In the case that the selected r
adaptive actions, that may result in mod
set of rules itself, resulting a new shape
device. Further transitions will occur by a
set of rules until another adaptive action is
The logical module of the program is
functional module whenever an ada
requested in the simulation.
The main purpose of this module is to
modifying operations corresponding
received from the functional module in
interpretation of an adaptive transition.

Imperative Logic

Shared Memory
Alloc

Message Coletor

EXPORT

MONITOR

Data Manager

MainName Report

F

EXPORT IMPORT

Table Symbol
Process
Function
 Thread
 Process
Process
Process
Process
IMPORT

unctional
Process

Fig. 8 – Structure Application Sketch
Application

Multiparadigm
Environment
s been designed
peration of the
ments a general
g the adaptive

 same or it may
later case, the

st be input prior
is performed by
description (read
 so allowing the

 searching the
to the current
 current input to

is applied by the
guration for the
ule makes use of
ifications to the
for the adaptive
pplying the new
 executed.

activated by the
ptive action is

perform all self-
to the request
response to the

Fig. 9 – Modules Application Sketch

It works by reading the currently used description of the
automaton and performing the requested edit operations
on the set of rules it represents.
In order to select the proper changes to the set of rules, the
logical module extracts the corresponding commands
from a description of the adaptive function to be applied.
Formal parameters are first replaced by actual arguments
of the adaptive function being called, then the set of
editing commands is applied to the set of current rules.
After being updated, the set of rules describing the new
shape of the adaptive automaton is released for use, and
command is passed back to the functional module for
proceeding with the simulation.
Errors and malfunctions in the program are reported by
the imperative module whenever detected by any of the
modules that simulate the adaptive automaton.
In the cases that some module detects any error situation,
that module will activate the imperative module by
sending to it a request for reporting the error situation.

6. CONCLUSIONS
Multi-paradigm and multi-language programming allow
developers to flexibly express the implementation of their
application programs by using a mix of different
languages and even paradigms.
Among the advantages of this technique we can mention:
Programmers are allowed to use the most important
features of each language and paradigm; They are able to
choose the most adequate language for each part of the
application being developed. In the case multiple
programming groups are used in the development of the
project, the best of the skills and knowledge in each team
may be used in the development of the final product.
In the work described in this paper, a prototype of such a
programming environment has been used as a reference,

and adaptive automata have been employed as a formal
mathematical model in two very different situations: in the
development of the name manager of the environment and
in the construction of a multi-language and multi-
paradigmatic application case study that implements an
adaptive acceptor for the famous context-sensitive
language anbncn.
Besides validating most of the initially proposed
arguments, these experiments have confirmed the
effectiveness of both the multi-paradigmatic/multi-
language approach in programming and the adaptive
techniques used to implement solutions for complex
problems.

7. REFERENCES
[1] Zave, Pamela, A compositional Approach to

Multiparadigm Programming, AT&T Laboratories,
IEEE Software – September 1989.

[2] Hailpern Brent, Multiparadigm Research: A Survey
of Nine Projects” - IEEE Software - January 1986.

[3] Spinellis, Diomidis D., Programming Paradigms as
Object Classes: A Structuring Mechanism for
Multiparadigm Programming”, February 1994, A
thesis submitted for the degree of Doctor of
Philosophy of the University of London.

[4] Mellish, C.S. and Clocksin, W.F., Programming in
Prolog, Springer-Verlag Berlin Heidelberg, - 1994.

[5] Budd, Timothy A., Multiparadigm Programming in
LEDA, Oregon State University, Addison-Wesley
Publishing Company, Inc, 1995.

[6] Neto, J.J., Adaptive automata for context-dependent
languages, ACM SIGPLAN Notices, Volume 29,
Número 9, Setembro 1994.

[7] Lewis, Harry R. and Papadimitriou, Christos H.,
Elements of the Theory of Computation”. Second
Edition. Prentice-Hall Inc. 1998.

[8] Neto, J. J., Introdução à Compilação, Editora Livros
Técnicos e Científicos Ed., Rio de Janeiro, 1987.

[9] Freitas, A. V., Aspectos de Implementação de
Ambientes Multilinguagens de Programação,
Dissertação de Mestrado, EPUSP, 2000.

[10] Neto, J. J. and Freitas, A. V., Aspectos do Projeto e
Implementação de Ambientes Multilinguagens de
Programação,CACIC 2000–VI Congreso Argentino
de Ciencias de la Computación –2000 , Argentina.

[11] Iwai, M. K., Um formalismo gramatical adaptativo
para linguagens dependentes de contexto. São Paulo
2000. Doctoral Thesis. Escola Politécnica USP.

