
1

An adaptive alternative for syntactic pattern
recognition

Eduardo Rocha Costa, Andre Riyuiti Hirakawa, João José Neto

A. Adaptatives Techniques

Abstract— Currently there are three basic types of pat-
tern recognition, the syntactic, the statistical and the neu-
ral types. They all have advantages and disadvantages, some
of which are troublesome. In statistical methods it is dif-
ficult to express structured information. Neural methods
have problems to represent neural networks semantically.
In syntactic methods it is lead to learn new rules. This is
exactly the strong point in the method presented here, due
to the inherent learning ability of adaptive automata. Our
method not only solves the learning problem, but also re-
alizes that it is a promising method since it shows many
of the advantages of much more complex methods, such as
self-organizing neural nets, which have adaptability.

The method presented here is suitable to handle robot
tracking applications where the goal is to find some object
or position without needing details on information of the
objects or the environment.

Basic geometric patterns, like rectangles and triangles are
used here to ilustrate the recognition process using adaptive
automata, and also to demonstrate the simplicity and effi-
ciency of the method. This is a first step, from which it will
be able to recognize a greater number and complex forms
too.

Keywords— Pattern Recognition, Adaptive automata,
Robotics.

I. Introduction

Pattern recognition is a process based on the capacity to
distinguish different patterns and classify then according
to their different attributes or different values assumed by
a common attribute. Unfortunately, that isn’t always an
easy task.

As an example, let us study pictures in newspapers, con-
sisting of black and white dots arranged in an array format.
We may consider dots as basic characteristics or primitives.
In order to try distinguishing different objects, in the pic-
ture, such as a ship and a car, we realize that the spatial
arrays of these primitives are definitely different. To rec-
ognize different pictures we must apply an algorithm that
takes into account the whole dot distribution. Depending
on the object features and the purpose of the recognition,
that process may be complex and hard. In order to solve
that problem, the recognition process may include methods
that simplify object features and reduces the information
range. In this case, a set of primitives is defined and the
original features are converted into particular primitives, as
shown in the method described in this paper. The choice
of the primitives in this set is a hard work that depends
on object features and the main goals of the recognition
process [1].

A. Pattern Recognition Process

The process pattern recognition comprehends informa-
tion processing and transformation that start, form infor-
mation gathered by sensors and performs adequate manip-
ulation until results are obtained as the outputs of some
classification algorithm.

• Sensor - Sensors are devices that gather information from
the desired environment. Cameras, infrared sensors, ultra-
sonic sensors and so on usualy accomplish this task [2],[3].
• Filtering and preprocessing [2],[4] – This step is applied
in order to simplify the final processing and recognition
tasks. For example, a black-and-white image frame may
be transformed into a binary logical array. Then, filtering
and/or emphasizing methods may be applied in order to
improving the information quality [5].
• Feature Extraction Algorithm - In this step the image
is segmented and primitives are extracted. The initial in-
formation is analyzed to get the desired information and
determine the primitives set. The original feature is com-
pared with pre-defined subsets of patterns that will com-
pose the final pattern to allow the recognition. The pattern
subset is formed by primitives or vectors[1]. In this step,
the adequate choice of the pattern makes the difference in
the recognition process.
• Classification - It is the recognition process, where the
primitive set or the feature vectors are analyzed to accom-
plish the desired identification. There are different classifi-
cation algorithm for different applications:
– Syntactic. Uses graphs and grammars [5].
– Statistic. Uses Bayes networks or near neighbor meth-

ods [6].
– Neural. Uses different types of neural networks [6],[7].

B. Adaptive techniques

Any formal device may become adaptive, by adding
and adptive mechanism to the device’s usual formalism
[8]. However, that does not add complexity to the orig-
inal notation, which remains essentially untouched, except
for the addition of the mechanisms responsible by dynam-
ically modifying its behaviour. We will modify the simple
formalism of the finite state automata, into adaptive fi-
nite automata, therefore increasing its power, making it
equivalent to the Turing machine. This way, besides solv-
ing problems that before could not be solved by finite au-
tomata, these will incorporate an intrinsic learning power,
which is a desirable effect for our purporse.

2

II. Concepts

A. Formalism

A.1 Automata

Finite Automata are devices whose formal definition is
given below.
It is five tuple (Q,Σ, δ, q0, F), with:
1. A finite, non empty set of states, denoted by Q
2. An finite, non empty alphabet, denoted by Σ
3. A transistion function, δ : (Q× Σ) → Q
4. A initial state q0 ∈ Q
5. A set of final states, F ⊆ Q

This type of automaton is called deterministic finite au-
tomaton, because given the current state and an input sym-
bol, the destination state is uniquely defined. Any finite
automaton recognizes some regular language. We can now
illustrate a notation for this formalism with the following
automaton.

M1 = ({a1, b1}, {σ1, σ2}, δ, q1, {a1}) (1)

TABLE I

Transistion Function.

q σ δ(q, σ) = q′

a1 σ1 b1
b1 σ2 a1

A rule in this formalism has the general form (q, σ) → q′

with q, q′ ∈ Q and σ ∈ Σ. Table I holds the two rules that
define this automaton: (a1, σ1) → b1, and (b1, σ2) → a1. A
graphical representation for this device is shown in Figure
1.

@R����
a1n ����

b1

σ1
� ��
σ2� ��

Fig. 1. Finite Automaton M1.

A.2 Adaptive Automata

The formalism abovefor finite automata is simple. It
may be converted into adaptive formalism by specifying
the conditions under which it is expected to be modified,
as well as the adaptations to take palce in each situation
[8], [9].

An adaptive device has the form AD = (ND0, AM)
where the device ND0 is not adaptive, and AM is the
associated adaptive mechanism.

The adaptive finite automaton is defined as in (2)

AA = (Q0, AR0,Σ, q0, F,B,A) (2)

AR0 is the set of adptive rules and is given in (3)

AR0 ⊆ B × ((Q× Σ)×Q)×A (3)

where (Q×Σ)×Q corresponds to δ in the formalism of the
finite automaton. B and A are sets of adaptive actions, to
be executed respectively before and after the transistion.

Each action is composed by, set of primitive adaptive
actions as shown in the Table II.

TABLE II

Notation for primitive actions and rules.

Symbol Meant
?[rule, action φ, action ψ] Action of inspection
−[rule, action φ, action ψ] Action of exclusion
+[rule, action φ, action ψ] Action of inclusion

The format of rules r that define δ is the same of that in
the underlying non adaptive formalism: ψ and φ are before
and after adaptive actions, respectively φ ∈ B, ψ ∈ A.

Table III shows the convetion adopted for denoting adap-
tive actions.

TABLE III

Graphical notation for adaptive actions.

Symbol Nomenclature
Ψ• before adaptive action (φ)
•Ψ after adaptive action (ψ)

Notice, that in its general form Ψ is parametric, denoted
ψ(α1, α2, . . . , αn) where αi are arguments of the function
Ψ.

Having more than one primitive adaptive action speci-
fied, all inspections and exclusions are performed first, and
finally, the inclusions. Such composed actions are built
from primitive actions.
As example, an adaptive automaton that accepts the lan-
guage {w | w = (n

υ)n
, n ≥ 0} is depicted in the Figure

2.

@R����
a1 n����

b1

����
a2 ����

b2

-υ

?
(•ψ(2)

6
)

Fig. 2. Automaton for parenthesis levels.

In the Figure 2, •ψ(i) is the after adaptive action, and
is described in the Table IV, noting that the new states
ai+1, bi+1, that are not in the Figure 2 are automatically
instanced every time that ψ(i) is activated.

After the execution of transistion (a1, () → a2, •ψ(2),
the aspect of the automaton becomes that on the Figure 3.

Notice that the transistion (a1, () → a2, •ψ(2) has been
eliminated, and the transistions in (4), have been inserted.

(a2, () → a3, E , •ψ(3)
(b3,)) → b2, E , E
(as, υ) → b2, E , E

(4)

3

TABLE IV

Description of Adaptive Action ψ(i).

ψ(i)

−[(ai−1, () → ai, E , ψ(i)]

+[(ai−1, () → ai, E , E]
+[(ai, υ) → bi, E , E]
+[(ai, () → ai+1, E , ψ(i+ 1)]
+[(bi+1,)) → bi, E , E]

@R����
a1 n����

b1

����
a2 ����

b2

����
a3 ����

b3

-υ

-υ

?
(•ψ(3)

6
)

?
(

6
)

Fig. 3. Aspect of the adaptive automaton for parenteses levels after
finding the first symbol (.

With such mechanism, adaptive finite automata become
able to recognize more complex languages, for example
anbncn or other context dependent languages. See section
III-C.1.

B. Syntactic recognition of patterns

Syntactic methods may be classified as grammatical or
graphical.

Graphical methods use graphs and trees, in their repre-
sentation.

Grammatical methods use automata and parses of some
types and the storage is in the form of grammars or au-
tomata.

Data entry in syntatic methods is primitive, and applies
to basic forms, such as, straight lines and angles, or com-
posite forms, e.g. squares and circles.

One may ask whether primitives are the best choice for
pattern recognition. Human beings recognize their world
in this way which encorage adopting such approach.

In order to illustrate this affirmation, we shall study,
as example, the recognition of a dog. Several races exist,
including half-breed, resulting from the crossing of races. If
we meet a dog anywhere, no matter how would it seem, we
are always sure that it is a dog, an not any other animal.
Therefore, we can assume that we do not register images
of each existing dog, but peculiar characteristics of this
type of animal, independent of the race it belongs to. We
can extend such reasoning to several other objects, such as

chairs, trees, houses, etc.
In short, whichever objects are analyzed, we will be able

to find peculiar characteristics, that enable us to classify
similar objects, and objects of one same class, with small
differences.

In the syntactic method there are many successfully ap-
plications, e.g. the recognition of cromosomes and Chinese
characters recognition. We also point out here that the in-
duction of context-free and context-dependent have been
of little use because of their complexity.

III. Proposal

A. Usual implementation

After the image including the pattern to be recognized,
is preprocessed and segmented, we will need a grammar
already implemented and adjusted to the previously chosen
primitives.

Therefore, for each project, we will need to choose new
primitives before determining the grammar for the case.
So, for each project all grammatical part needs to be cre-
ated again. Hence, each project requires a separate study,
which is time consuming because it’s not a trivial task.

B. Adaptive automata replacing conventional ones

The use of adaptive automata in the solution of a spe-
cific problem allows the resolution of similar problems with
only minor changes. It will adapt itself, reaching new con-
figurations, so that it is capable to recognize another class
of primitives for a different application. So using adap-
tive automata is a potentially time saving practice in such
situations.

C. Specification of an Adaptive Automaton for the partic-
ular case of pattern recognition

C.1 Functionality

Here only the final process is described, since is well
known and may be found in many texts on image pro-
cessing, such as [2] and [3]. The input data to the process
will be made through a matrix n×m that is restricted to
10 × 10 in this illustrative example. Figure 4 shows the
graphical form of the data.

Fig. 4. Binarized image

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

In figure 4, the 10x10 matrix of binarized points repre-
sents a square as the image to be recognized. After being

4

trained the automaton must be capable to recognize that
pattern represented by 1’s.

First of all, a grid compatible with the application must
be chosen, then the primitives are applied. In this case
unitary grid size is chosen for best resolution. Figure 5
shows the primitives selected for this case.

6

?

-�

a

b

c

d

Fig. 5. Primitives for squares

The size of each primitive is unitary, and each pixel of
the image will be a primitive in the corresponding direc-
tion. After doing so, the image in figure 4 is interpreted
as being dddaaabbbccc. Afterwards, an adaptive automa-
ton can be implemented, which will recognize squares and
will have to recognize any shape of the form anbncndn.
This is a context dependent language, that may be recog-
nized only by a device with the power of a Turing Machine
[10]. Our proposed device has the same power of this for-
mation, being able, therefore, to recognize languages with
such complexity[9].

Fig. 6. Binarized equilateral triangle

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 1 0 1 0 0 0 0
0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

D. Analysis of the Pattern recognition process

• Similarity is the main problem to be solved. Given a per-
fect square and another one with some noise, say, with a
slightly defective edge, will the parser recognize these two
patterns as members of the same class? This problem may
be addressed in two ways: first, during the preprocessing
of the image, when imperfections may be corrected, in or-
der to minimize this effect; second, during the recognition
phase, error repair techiniques may be used. This method
is widely used in compilers. Both methods may be applied
together, in the first phase, for minimizing image flaws. In

6

?

-� �
�
��

@
@
@R

@
@

@I

�
�

�	

a b

c

def

g

h

Fig. 7. Primitives for triangle

@R����
a1 ����

b1 ����
c1 n����

f

����
a2 ����

b2 ����
c2

6
c•ψ(1)

6
a

6
f

@
@

@@R

E
@

@
@@R

E
@

@
@@R

E

Fig. 8. Automaton recognition of triangles.

the classification phase, error repair may be used to remove
slightly deformations in the patterns.
• As noticed, in usual pattern recognition, scalability is a
problem, since depending on the focus of the camera, the
image of the same object will appear of different sizes, thus
generating recognition errors. In the usual form, transfor-
mations are needed to be applied to the image, demanding
extra processing time. In the present example, that is not
important for the automaton, therefore it will recognize the
form, independently of its scale.
• When an image is rotated, the recognizer cannot clas-
sify it as any of the known forms, because all primitives
are also rotated by a certain angle. The solution, relatively
simple, to solve this problem, is simply to rotate all the im-
age that angle, before applying the extraction algorithms.
Consequently, all the forms will be reduced to the same
axle, thus not growing the complexity of the recognition
process.
• Errors due to parallax may be solved by rotating the im-

@R����
a1 ����

b1 ����
c1 n����

f

����
a2 ����

b2 ����
c2

����
a3 ����

b3 ����
c3

6
c•ψ(1)

6
a

6
f

6
c•ψ(2)

6
a

6
f

A
A
A
A
A
A
A
AU

E
A
A
A
A
A
A
A
AU

E
A
A
A
A
A
A
A
AU

E

Fig. 9. Automaton recognition of triangles.

5

age around its z axle, i.e., the axle perpendicular to the lens
of camera, before the phase of primitive extration. Texts
on rotations of images can are found in the literature [11].

IV. Implementation

Figure 6 shows the graphical form of the input data,
and is used to demonstrate how adaptive automata work.
Figure 7 shows the primitives for this implementation. In
the Figure, each primitive corresponds to two pixels in the
Figure 6.

The string represented by this image is of the form
cnanfn, actually c2a2f2, whose recognizing automaton is
graphically represented in Figure 8. After the adaptive ac-
tion ψ(i) is performed, the shape of the automaton will
have the aspect shown in Figure 9. Finally, the automa-
ton returns to the original configuration in Figure 8 again,
and may be used for recognizing another string. The after-
adaptive action ψ(i) is defined in Table V.

TABLE V

Adaptive Action ψ(i).

ψ(i)

−[(ai, E) → bi−1, E , E]
−[(bi, E) → ci−1, E , E]
−[(ci, E) → f, E , E]

+[(ai, c) → ai+1, E , ψ(i)]
+[(bi, a) → bi+1, E , E]
+[(ci, f) → ci+1, E , E]

+[(ai+1, E) → b1, E , E]
+[(bi+1, E) → c1, E , E]
+[(ci+1, E) → f, E , E]

V. Conclusion

A new method for pattern recognition, based on adaptive
automata was presented. From the limitations of usual syn-
tactic methods, i. e., learning, flexibility, etc, our method
extends it with use of the adaptive automata, which has
an inherent learning ability, wich is highly convenient for
pattern recognition. The new method seems promising.
Its formalism is well-defined and simple, leading to very
fast and simple implementations. The illustrating exam-
ple show that the method works very well in the estab-
lished conditions, and also, the method has low sensitivity
to errors in the image, which is an inherent effect of the
error-recovery syntactical technique used with automata.
The implementation of the automata and the choice of
the primitives change the efficiency of the method and
must be analyzed carefully. The proposed method can be
easily extended for recogniting complex forms by the re-
organization of the automata or by interconnecting several
simple automata. The use of special automata designed

for accepting the so called cyclic strings [12] is also a con-
cern, and will improve further the efficiency of the proposal
syntactical method.

References

[1] Robert J. Schalkoff, Pattern Recognition: statistical, structural
and neural approaches, John Wiley & Sons, Inc., 1992.

[2] R. C. Gonzalez and P. Wintz, Digital Image Processing,
Addison-Wesley, Reading, MA, 3rd edition, 1987.

[3] D. H. Ballard and C. M. Brown, Computer Vision, Prentice-
Hall, Englewood Cliffs, NJ, 1982.

[4] Gerhard X Ritter and Joseph N Wilson, Handbook of computer
vision algorithms in image algebra, CRC press LLC, 2nd edition,
2000.

[5] K. S. FU, Syntactic Methods in Pattern Recognition, New York:
Academic Press, 1974.

[6] Jürgen Schürmann, Pattern Classification: a unified view of
statistical an neural approaches, John Wiley & Sons, Inc., 1996.

[7] B. D. Ripley, Pattern Recognition and Neura Networks, Cam-
bridge University Press, 1996.

[8] João José Neto, “Adaptive rule-driven devices - general formu-
lation and case study,” 6 Conference on Implementation and
Application of Automata - CIAA 2001, July 2001.

[9] João José Neto, “Adaptive automata for context-dependet lan-
guages,” ACM SIGPLAN Notices, vol. 29, no. 9, september
1994.

[10] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman, In-
troduction to Automata Theory, Languages, and Computation,
Addison Wesley, 2nd edition, 2001.

[11] James D. Foley, Andries Van Dam, and Steven K. Feiner, Intro-
duction to Computer Graphics, Addison-Wesley, Reading, MA,
1st edition, 1993.

[12] Borivoj MELICHAR, “Deterministic parsing of cyclic strings,”
7 Conference on Implementation and Application of Automata
- CIAA 2001, July 2002.

EDUARDO ROCHA COSTA Was Born in
São Paulo, Brazil, on March 3, 1970. He re-
ceived BS degree in Eletrical Engineering from
FEI (Faculdade de Engenharia Industrial) São
Bernardo, SP, Brazil, in 2001. He is currently a
Master student in Electrical Engineering at Es-
cola Politécnica da Universidade de São Paulo.
His research interests are in robotics, adaptive
automata and their aplications, path planing.

ANDRE RIYUITI HIRAKAWA Was Born in
São Paulo, Brazil, on June 15, 1965. He re-
ceived the BS and MS degrees in Electrical
Engineering from São Paulo University, São
Paulo, Brazil, in 1990 and 1992, respectively.
In 1992, he joined the Department of Com-
puter and Electrical Engineering at the Yoko-
hama National University, Yokohama, Japan,
as researcher and also attending the PhD pro-
gram, concluded in 1997. In 1998, he joined the
Department of Computer and Electrical Engi-

neering at the São Paulo University where he is presently an Assistant
Professor. His research interests are in Automation and Robotics in-
cluding Control, intelligent sensor, power electronics, path planning,
AGV’s, and wireless systems, applied to agricultural and outdoor en-
vironment automation.

6

JOÃO JOSÉ NETO Electical Engineer, Es-
cola Politécnica da Universidade de São Paulo,
1971 M.Sc in Electical Engineering, Escola
Politécnica da Universidade de São Paulo,
1975 Ph.D in Electical Engineering, Escola
Politécnica da Universidade de São Paulo, 1980
Livre Docente in Electical Engineering, Es-
cola Politécnica da Universidade de São Paulo,
1993 Associate Professor in the Department of
Computer Engineering and Digital Systems of
the Escola Politécnica da Universidade de São

Paulo. Interest Areas: Formal languages, automata, theory of com-
putation, systems programming, compilers, programming languages.
Research field: Adaptive devices and their applications.

