
Applied Mathematics and Computation 152 (2004) 561–580

www.elsevier.com/locate/amc
Complete automation of the generalized
inverse method for constrained
mechanical systems of particles

C. Itiki a,*,1, J. Jos�e Neto b

a Department of Telecommunication and Control Engineering, University of S~ao Paulo,

S~ao Paulo, SP, Brazil
b Department of Computer Engineering and Digital Systems, University of S~ao Paulo,

S~ao Paulo, SP, Brazil
Abstract

A completely automated method for simulating constrained mechanical systems of

particles is presented. A compiler generates MATLAB� program files that are specific to

the problem presented by the user. These automatically generated programs call several

subroutines that perform numerical differentiation, acceleration computation and nu-

merical integration, providing the accelerations, velocities and coordinates of all the

particles of the specific mechanical system.

� 2003 Elsevier Inc. All rights reserved.

Keywords: Generalized inverse method; Constrained mechanical systems; Automation; Simulation;

Numerical routines
1. Introduction

One of the central problems in analytical mechanics is the derivation of

equations of motion for constrained mechanical systems. Lagrange [1], Gauss

[2], Gibbs [3] and Appell [4] proposed analytical methods to derive the equations
* Corresponding author. EPUSP-PTC, Av. Prof. Luciano Gualberto, trav.3, n.158, Cidade

Universit�aria, S~ao Paulo, SP 05508-900, Brazil.

E-mail addresses: cinthia@leb.usp.br (C. Itiki), joao.jose@poli.usp.br (J. Jos�e Neto).
1 Supported by FAPESP grant 98/07653-8.

0096-3003/$ - see front matter � 2003 Elsevier Inc. All rights reserved.

doi:10.1016/S0096-3003(03)00577-0

mail to: cinthia@leb.usp.br

562 C. Itiki, J. Jos�e Neto / Appl. Math. Comput. 152 (2004) 561–580
of motion. However, the choice of a reduced set of independent variables and

the assumption of independent constraint equations constitute a hindrance to
the automatic derivation of the equations of motion.

More recently, Udwadia and Kalaba [5] introduced the generalized inverse

form of the acceleration for constrained mechanical systems. Their solution is

equivalent to Gauss, Lagrange and Gibbs–Appell equations of motion [5–7].

One advantage of the generalized inverse form is that the actual acceleration is

given explicitly. Besides it, non-holonomic constraints are dealt as easily as

holonomic constraints, and dependent constraint equations may be included,

as long as they are consistent with each other. Another advantage is that the
method does not require the choice of a reduced set of variables. Its analytical

solution still demands a lot of algebraic work for the determination of the

actual acceleration. However, the automatic solution of the equations of mo-

tion can be obtained. A completely automated numerical method is presented

in this work. Given the constraint equations, masses and external forces, the

generalized inverse solution can be obtained automatically. The automation of

the generalized inverse method makes the simulation of constrained mechan-

ical systems of particles straightforward.
2. Methods

Consider an unconstrained mechanical system with n particles. The free

acceleration vector ðx1; y1; z1; x2; y2; z2; . . . ; xn; yn; znÞ is related to the total ex-

ternal force f ¼ ½fx1; fy1; fz1; . . . ; fxn; fyn; fzn�T applied to the particles, and can

be expressed as
a ¼ M�1 � f; ð1Þ
where M is the mass matrix, a positive definite diagonal matrix, with masses

fm1;m1;m1;m2;m2;m2; . . . ;mn;mn;mng on its main diagonal.
Let us introduce m independent constraints, holonomic or non-holonomic,

in the mechanical system. A set of m linear relationships on the acceleration

components ð€x1; €y1;€z1; . . . ;€xn; €yn;€znÞ is obtained by differentiating the constraint

equations. Holonomic constraint equations hkðt; xðtÞÞ ¼ 0 should be differen-

tiated twice, while non-holonomic constraints gkðt; xðtÞ; _xðtÞÞ ¼ 0 should be

differentiated only once. The set of linear relationships can be written in matrix

notation as
Aðt; x; _xÞ � €x ¼ bðt; x; _xÞ: ð2Þ
According to Udwadia and Kalaba [5], the generalized inverse form of the

actual acceleration is given in terms of matrix A and vector b
€x ¼ aþM�1=2 � ðA �M�1=2Þþ � ðb� A � aÞ; ð3Þ

C. Itiki, J. Jos�e Neto / Appl. Math. Comput. 152 (2004) 561–580 563
where ðA �M�1=2Þþ is the Moore–Penrose generalized inverse matrix [8] of the

product ðA �M�1=2Þ.
The automation of the generalized inverse method can be divided into four

steps [9]. In the first step, the compiler writes specific programs that call general

routines. The second step consists of the differentiation of constraint equations.

The third step is the determination of matrix A and vector b. The fourth step is

the computation of the actual acceleration, given matrix A and vector b and

numerical integration. Each step of the generalized inverse method can be

implemented automatically.

In the main program, the user provides constraint equations, masses and
external forces as inputs. The output (first step) is a specific set of MATLAB�

source files that call general routines for numerical differentiation (second

step), matrix A and vector b construction (third step), acceleration computa-

tion and numerical integration (fourth step). The word specific is used here to

express that the files are generated for the specific problem that was defined by

the user. The generation of the specific set of files using the given inputs is

performed by the main program implemented in MATLAB�, which is called

‘‘compiler’’. Fig. 1 illustrates the relationship between the inputs and outputs
of the compiler.

The general routines and the compiler are described in the following sec-

tions. Then, an example is given to illustrate how the system may be used for

the simulation of constrained mechanical systems of particles.

2.1. General routines for differentiation

The second automation step involves differentiation of constraint equations.

One differentiation of any non-holonomic constraint of the form

gkðt; xðtÞ; _xðtÞÞ ¼ 0 results in a linear relationship on the acceleration compo-

nents, given by Eq. (4).
ogk
o _x1

€x1 þ
ogk
o _y1

€y1 þ
ogk
o_z1

€z1 þ � � � þ ogk
o _xn

€xn þ
ogk
o _yn

€yn þ
ogk
o_zn

€zn

¼ � ogk
ot

�
þ ogk

ox1
_x1 þ

ogk
oy1

_y1 þ
ogk
oz1

_z1 þ � � � þ ogk
oxn

_xn þ
ogk
oyn

_yn þ
ogk
ozn

_zn

�
:

ð4Þ
One may notice that the coefficients of acceleration components are partial

derivatives. As a result, the differentiation of constraint equations involves the

calculation of partial derivatives. The fast and efficient evaluation of deriva-

tives (FEED) method [10] evaluates derivatives in an automatic and efficient
manner. It expresses a given function as a combination of simple functions

available in a library of numerical routines. Each FEED routine calculates the

value of a specific simple function and its first and second partial derivatives.

Fig. 1. Automation system.

564 C. Itiki, J. Jos�e Neto / Appl. Math. Comput. 152 (2004) 561–580
Several FEED routines were implemented [9] in MATLAB� and adapted for
this work.

For any function gkðt; x; _xÞ, vector Gk contains the function�s value, and its

first- and second-order partial derivatives. The first element of vector Gk is the

value of function gkðt; x; _xÞ. The second element is the first partial derivative of

the function gk regarding time t. Rows 3 to 3nþ 2 contain the first partial

derivatives regarding coordinates ðx1; y1; z1; x2; y2; z2; . . . ; xn; yn; znÞ. The first

C. Itiki, J. Jos�e Neto / Appl. Math. Comput. 152 (2004) 561–580 565
partial derivatives regarding velocity components ð _x1; _y1; _z1; _x2; _y2; _z2; . . . ;
_xn; _yn; _znÞ are on rows 3nþ 3 to 6nþ 2.

Two differentiations of holonomic constraints hkðt; xðtÞÞ ¼ 0 result in linear

relationships on the acceleration components. General FEED routines imple-

ment the two differentiations required for the second automation step. For

holonomic constraints, vector Hk contains function hkðt; xÞ, and its first- and

second-order partial derivatives. The first element of vector Hk is the value of

function hkðt; xðtÞÞ. Rows 2 to 3nþ 2 contain the first partial derivatives re-

garding time t and coordinates ðx1; y1; z1; x2; y2; z2; . . . ; xn; yn; znÞ. Second-order
partial derivatives are on the last rows of vector Hk.
2.2. General routine for identification of matrix A and vector b

The third step of the generalized inverse method is the identification of

matrix A and vector b, in terms of the calculated partial derivatives. Each

constraint equation brings a new row Ak to matrix A, and a new element bk to
vector b. For non-holonomic constraints gkðt; xðtÞ; _xðtÞÞ ¼ 0, the kth rows of

matrix A and vector bmay be obtained through Eq. (4), and are given in matrix

notation by Eqs. (5) and (6).
Ak ¼
ogk
o _x1

ogk
o _y1

ogk
o_z1

� � � ogk
o _xn

ogk
o _yn

ogk
o_zn

� �
; ð5Þ
bk ¼ � ogk
ot

ogk
ox1

ogk
oy1

ogk
oz1

� � � ogk
oxn

ogk
oyn

ogk
ozn

� �

1
_x1
_y1
_z1
..
.

_xn
_yn
_zn

2
666666666664

3
777777777775

; ð6Þ
for k ¼ 1; 2; . . . ;m.
For holonomic constraints, each row Ak of matrix A is given by Eq. (7) and

each row bk of vector b is given by Eq. (8).
Ak ¼
ohk
ox1

ohk
oy1

ohk
oz1

� � � ohk
oxn

ohk
oyn

ohk
ozn

� �
; ð7Þ

566 C. Itiki, J. Jos�e Neto / Appl. Math. Comput. 152 (2004) 561–580
bk ¼ � 1 _x1 _y1 � � � _zn
� �

�

o2hk
ot2

o2hk
otox1

o2hk
otoy1

� � � o2hk
otozn

o2hk
ox1ot

o2hk
ox21

o2hk
ox1oy1

� � � o2hk
ox1ozn

o2hk
oy1ot

o2hk
oy1ox1

o2hk
oy21

� � � o2hk
oy1ozn

..

. ..
. ..

. . .
. ..

.

o2hk
oznot

o2hk
oznox1

o2hk
oznoy1

� � � o2hk
oz2n

2
66666666666666664

3
77777777777777775

1

_x1
_y1

..

.

_zn

2
66666664

3
77777775
; ð8Þ
for k ¼ 1; 2; . . . ;m.
In this work, a general routine that builds matrix A and vector b from the

partial derivatives provided by FEED routines was implemented in MAT-

LAB�.
2.3. General routines for computation of the actual accelerations, velocities and

positions

Once matrix A and vector b are obtained, the fourth step of the generalized
inverse method can be automated. The actual acceleration should be calculated

by Eq. (3). However, there is a need for a numerical routine that calculates

generalized inverse matrices. The numerical calculation of generalized inverse

matrices may be performed in several ways [11,12]. In this work, a MATLAB�

routine called pinvð�Þ [13] was used. It calculates pseudo-inverse matrices nu-

merically, through singular value decomposition routines. The actual acceler-

ation is then obtained from the constraint equations, by an automated method.

One may also desire to obtain trajectories instead of accelerations. In this
case, a numerical integration method may be used. In our work, a fourth-order

Runge–Kutta method with constant step size is used for calculation of veloc-

ities and coordinates.
2.4. Compiler

The set of general routines described in the previous sections allows fluent

users of MATLAB� to write programs that solve their specific problems, by

calling those routines. However, in order for the system to be useful for all
users, it is important that a man–machine interface be available, allowing data

to be input by the user and automatically creating (first step) a specific set of

programs, which calls general routines. This interface was implemented as a

C. Itiki, J. Jos�e Neto / Appl. Math. Comput. 152 (2004) 561–580 567
compiler that converts input data into specific programs written in MATLAB�

language. These programs, in turn, solve the specific problem.
As in any compiler development problem, it is advisable to specify rigor-

ously the language to be accepted by the compiler, before its implementation.

To do this, we use knowledge from compiling theory [14].

The compiler has three functional parts: a lexical analyzer, a syntax ac-

ceptor, and a set of semantic routines. The lexical analyzer processes the input

chains (for example, the specifications of forces and constraint equations),

decomposing them into basic elementary units (for example, variables, con-

stants, functions and operation symbols), called ‘‘tokens’’. The syntax recog-
nizer verifies the adherence of the sequence of tokens generated by the lexical

analyzer to the grammar defining the syntax of the input language––the lan-

guage that specifies the application problem to be solved. This grammar

specifies the set of rules, by defining the valid sequences of tokens. Finally, the

set of semantic routines implements the generation of the desired MATLAB�

script text, by choosing the general routines to be called and delivering the

needed error messages.

In this implementation, the compiler may be described as a sequence of nine
dialogs:
Compiler

1. dialog A (subroutine name)

2. dialog B (system dimension)

3. dialog C (number of particles)

4. dialog D (number of constraint equations)

5. dialog E (masses)

6. dialog F (forces)

7. dialog G (constraint equations)
8. dialog H (initial values for numerical integration)

9. dialog I (parameters for numerical integration)
The automaton that represents the sequential logic of the compiler is illus-

trated in Fig. 2. Letters A through I represent dialogs between the compiler and

its user. Actual dialogs are described in Table 1. Semantic routines are repre-

sented by R1 through R14 and are described by templates 1 to 4, in Appendix

A.

According to Table 1, for each input type (file name, mass, force, constraint

equation, etc.), there are corresponding valid atoms. For masses, any positive

number is valid (integer, decimal, scientific). For system dimension, number of
particles and number of constraint equations, the only valid atoms are natural

numbers. For the sake of simplicity, we omit the descriptions of the lexical,

Fig. 2. Submachine compiler.

568 C. Itiki, J. Jos�e Neto / Appl. Math. Comput. 152 (2004) 561–580
syntactical and semantic analyzers in the cases mentioned above, for they may

be implemented directly as part of the host programming language.

However, in order to describe the more complex structures of the compiler,

their analyzers are specified in detail.

File names assume the standard form, being denoted as a letter followed by

an optional sequence of letters and/or decimal digits. The maximum length is 7,

Table 1

Compiler dialogs

System messages Syntax of user�s answer Restrictions

A––Enter subroutine name

(maximum 7 characters) (a)

Name Only the seven leftmost characters are used.

Programs defined in this way are activated by a

function call, identified by the letter c, followed

by the name provided in this dialog (the

resulting name is used for identifying the file

corresponding to the specific main program).

B––Choose the system dimension Select the desired option (a natural number) Options: 1, 2 and 3

C––Choose the number of particles Select the desired option (a natural number) Options: natural numbers from 1 to 10

D––Choose the number of constraint equations Select the desired option (a natural number) Options: natural numbers from 1 to 10

E––Enter a value for mi (
a) Number (b) i ¼ 1; 2; . . . number of particles

F––Enter the value of the force component (a)

in direction d for particle p
Expression (c) p 2 f1; . . . ng, d 2 fx; y; zg all variables in the

expression must have defined values at execu-

tion time.

G––Enter the ith constraint equation. (a) Expression (c) In case of syntax error, the user is notified and

asked to reenter the ith constraint equation.

H––Enter the initial values for the coordinates

and the velocity components of each particle

Number (b)

I––Enter the numerical integration step size Number (b)

Enter the initial time Number (b)

Enter the final time Number (b)

a In these dialogs, all data are pre-filled with default values. The <ENTER> key may be pressed for their acceptance. Valid inputs, which are typed in

by the user, replace default values. After the input of data, the system prompts the user for confirmation. Users answer by typing Y <ENTER> or

<ENTER> in order to confirm. Any other key followed by <ENTER> causes the rejection of data. In this case, the dialog is restarted, with the

previously typed data, presented to the user instead of the corresponding defaults.
b The syntax of numbers is verified at run-time by the subjacent MATLAB� environment.
c The syntax of the expressions provided by the user is verified, as described in Fig. 4.

C
.
Itik

i,
J
.
J
o
s �e

N
eto

/
A
p
p
l.
M
a
th
.
C
o
m
p
u
t.
1
5
2
(
2
0
0
4
)
5
6
1
–
5
8
0

5
6
9

570 C. Itiki, J. Jos�e Neto / Appl. Math. Comput. 152 (2004) 561–580
that is, only the first seven characters of longer names will be considered. All

grammars below are described in Wirth�s notation for context-free languages.
Syntax Grammar for file names:

1. name ¼ letter {digit j letter}.

Lexical Grammar for file names:

1. lettter¼ ‘‘A’’ j ‘‘B’’ j ‘‘C’’ j ‘‘D’’ j ‘‘E’’ j ‘‘F’’ j‘‘G’’ j ‘‘H’’ j ‘‘I’’ j ‘‘J’’ j
‘‘K’’ j ‘‘L’’ j ‘‘M’’ j ‘‘N’’ j‘‘O’’ j ‘‘P’’ j ‘‘Q’’ j ‘‘R’’ j ‘‘S’’ j ‘‘T’’ j ‘‘U’’ j
‘‘V’’ j‘‘W’’ j ‘‘X’’ j ‘‘Y’’ j ‘‘Z’’ j ‘‘a’’ j ‘‘b’’ j ‘‘c’’ j ‘‘d’’ j ‘‘e’’ j ‘‘f’’ j
‘‘g’’ j ‘‘h’’ j ‘‘i’’ j ‘‘j’’ j ‘‘k’’ j ‘‘l’’ j‘‘m’’ j ‘‘n’’ j ‘‘o’’ j ‘‘p’’ j ‘‘q’’ j ‘‘r’’ j
‘‘s’’ j ‘‘t’’ j‘‘u’’ j ‘‘v’’ j ‘‘w’’ j ‘‘x’’ j ‘‘y’’ j ‘‘z’’.

2. digit ¼ ‘‘0’’ j ‘‘1’’ j ‘‘2’’ j ‘‘3’’ j ‘‘4’’ j ‘‘5’’ j ‘‘6’’ j ‘‘7’’ j ‘‘8’’ j ‘‘9’’.
The lexical analyzer will extract the following valid atoms from force

components and constraint equations: variables, functions, operators and

numbers. Valid variables are: t, x}, y}, z}, vx}, vy}, vz} where } denotes a

natural number in the range 1 to p for a system with p particles. For example,

vy14 is valid, while vy15 is not valid for a system with 14 particles. Variables

t12, y, vz and z0 are not valid, regardless of the system�s dimension. The only

valid names for functions are: sin, cos, tan, asin, acos, atan, exp, ln, log, sinh,

cosh, tanh, asinh, acosh, atanh, and they are used in the conventional form.
Valid operators are +,), �, /, ^. They stand for the five usual arithmetic op-

erations (sum, subtraction, multiplication, division, and power). Numbers may

be denoted in natural, decimal or scientific notation.

The lexical grammar for constraint equations and forces may be described in

the following way:
Lexical Grammar for force components and constraint equations:

1. variable¼ ‘‘t’’ j (‘‘v’’ j e) (‘‘x’’ j ‘‘y’’ j ‘‘z’’) digit1 {digit}.
2. natural¼ digit {digit}.

3. decimal¼ natural ‘‘.’’ {digit} j ‘‘.’’ digit {digit}.
4. scientific¼ (natural (‘‘.’’ {digit} j e) j ‘‘.’’ digit {digit})

‘‘e’’ (‘‘+’’ j ‘‘)’’ j e) digit {digit}.
5. function¼ ‘‘sin’’ j ‘‘cos’’ j ‘‘tan’’ j ‘‘asin’’ j ‘‘acos’’ j ‘‘atan’’ j ‘‘exp’’ j ‘‘ln’’

j‘‘log’’ j ‘‘sinh’’ j ‘‘cosh’’ j ‘‘tanh’’ j ‘‘asinh’’ j ‘‘acosh’’ j ‘‘atanh’’.
6. digit1¼ ‘‘1’’ j ‘‘2’’ j ‘‘3’’ j ‘‘4’’ j ‘‘5’’ j ‘‘6’’ j ‘‘7’’ j ‘‘8’’ j ‘‘9’’.
7. digit¼ ‘‘0’’ j digit1.

C. Itiki, J. Jos�e Neto / Appl. Math. Comput. 152 (2004) 561–580 571
An automaton corresponding to the lexical analyzer associated with this

grammar is illustrated in Fig. 3.
Fig. 3. Submachine lexical analyzer for force components and constraint equations.

Fig. 4. Submachine syntax analyzer for force components and constraint equations.

572 C. Itiki, J. Jos�e Neto / Appl. Math. Comput. 152 (2004) 561–580
From the syntactical point of view, atoms are arranged according to the

following rule:
Syntax Grammar for force components and constraint equations:

1. expression¼ (variable j natural j decimal j scientific j
‘‘(’’ (‘‘+’’ j ‘‘)’’ j e) expression ‘‘)’’ j function ‘‘(’’ (‘‘+’’ j ‘‘)’’ j e) expression ‘‘)’’)
{(‘‘+’’ j ‘‘)’’ j ‘‘*’’ j ‘‘/’’ j ‘‘^’’) (variable j natural j decimal j scientific j
‘‘(’’ (‘‘+’’ j ‘‘)’’ j e) expression ‘‘)’’ j function ‘‘(’’ (‘‘+’’ j ‘‘)’’ j e) expression‘‘)’’)}
A submachine corresponding to the non-terminal expression is depicted in

Fig. 4.
3. Example

The simulation of a system with two particles is used as an application of the

automated method. Coordinates are given in terms of an inertial Cartesian

system ðx1; y1; z1; x2; y2; z2Þ.
The first particle is subject to two holonomic constraints that describe the

fact that the particle is moving in a meridian, over the surface of a ball rotating

around the z-axis with a constant angular velocity.

These holonomic constraints are given by
h1ðt; xÞ ¼ x21 þ y21 þ z21 � 1 ¼ 0; ð9Þ

C. Itiki, J. Jos�e Neto / Appl. Math. Comput. 152 (2004) 561–580 573
and
h2ðt; xÞ ¼ x1 � sinð2ptÞ � y1 � cosð2ptÞ ¼ 0: ð10Þ
The second particle is subject to two non-holonomic equations. No external
forces are applied to the particle. The two non-holonomic constraints are de-

scribed by
g3ðt; x; _xÞ ¼ z2 � _x2 � _y2 ¼ 0; ð11Þ
and
g4ðt; x; _xÞ ¼ z22 � _x2 � _y2 ¼ 0: ð12Þ
The following set of values was given as input to the compiler: masses equal

to 1 kg and an external force of)9.81 N applied to the first particle in the

radial direction.

The compiler generated automatically the set of specific programs––in-

cluded in Appendix B––that was the implementation of the generalized inverse

method for this specific problem.

Numerical integration of the actual accelerations––performed by the set of
specific programs––provided the trajectories of the particles. Integration was

performed in MATLAB� for a 5-s time window, with and integration step size

of 0.005 s. Initial conditions ðx1; y1; z1; x2; y2; z2; _x1; _y1; _z1; _x2; _y2; _z2Þ were consis-

tent with the constraint equations and given by (
ffiffiffi
2

p
=2,0,

ffiffiffi
2

p
=2,2,1,

)0.75,0,
ffiffiffi
2

p
� p, 0, 0, 0, 0.25).

The numerical integration results obtained through the automatically eval-

uated acceleration are shown in Figs. 5 and 6. Constraint functions h1 and h2––
given by Eqs. (9) and (10)––were calculated for 5 s of numerical integration.
Function h1 assumed the maximum absolute value of 1.5� 10�5, while function

h2 had a maximum absolute value of 2.5� 10�11. Both values show that errors

were negligible in comparison to the amplitude of the corresponding coordi-

nates.

Fig. 6a–c shows the coordinates of the second particle. Coordinates x2
and y2 remain constant. However, z2 has a linear response

z2ðtÞ ¼ �0:75þ 0:25t. Consequently, two of the velocity components remain

equal to zero, and the third one is constant and equal to 0.25, as one may
see in Fig. 6d–f. In Fig. 6g–i we may observe that all three acceleration

components are equal to zero. With this second particle, there was a change

in the rank of matrix A, for z2 ¼ 0. However, the results of numerical in-

tegration were quite satisfactory. Constraint functions g3 and g4 given by

Fig. 5. (a–c) Coordinates, (d–f) velocities, and (g–i) accelerations of a particle subject to two

holonomic constraints.

Fig. 6. (a–c) Coordinates, (d–f) velocities, and (g–i) accelerations of a particle subject to two non-

holonomic constraints.

574 C. Itiki, J. Jos�e Neto / Appl. Math. Comput. 152 (2004) 561–580

C. Itiki, J. Jos�e Neto / Appl. Math. Comput. 152 (2004) 561–580 575
Eqs. (11) and (12), were exactly equal to zero, throughout the whole sim-

ulation interval.
4. Discussion

The automated method developed in this work deals with holonomic and

non-holonomic constraints. It allows the use of rectangular coordinates instead

of forcing the choice of generalized coordinates. Constraint equations do not

need to be independent, as long as they are consistent. It also has flexibility to

handle systems with several particles.

The compiler––a computer program that implements this method in

MATLAB�––provides accelerations, velocities and coordinates of all parti-

cles of a constrained mechanical system, and can be easily used by people
who are not experts in advanced topics of Mechanics. It was used for the

simulation of a mechanical system with two independent particles and four

constraint equations, by automatically creating a specific set of programs

that calculated the acceleration in the generalized inverse form and per-

formed numerical integration. The same compiler can be used to solve other

problems involving constrained mechanical systems of particles, including

particles that interact with each other, if the user provides suitable data––

system dimension, number of particles, applied forces and constraint equa-
tions.

In summary, this work developed the complete automation of the general-

ized inverse method, for constrained mechanical systems of particles.
Acknowledgements

Authors thank Eduardo Nazima for the translation of Gauss�s paper, and
FAPESP for the research grant 98/07653-8.
Appendix A. Templates

Elements in rectangles are filled with appropriate values, according to the

corresponding user-provided data.

576 C. Itiki, J. Jos�e Neto / Appl. Math. Comput. 152 (2004) 561–580

C. Itiki, J. Jos�e Neto / Appl. Math. Comput. 152 (2004) 561–580 577
Appendix B. Specific programs

The specific main program defines global variables (number of coordinates

and number of variables) and numerical integration variables (step size, initial

time, end time, and initial conditions). It calls the routine ode45cte.m that
performs numerical integration, and it saves the results in files.

The specific subroutine generated by the compiler defines the mass matrix and

free acceleration vector. It also calls the numerical differentiation FEED rou-

tines, the matrix A and vector b construction routines, and the calculation of the

actual acceleration vector. Only one of the four constraint equations is shown.

578 C. Itiki, J. Jos�e Neto / Appl. Math. Comput. 152 (2004) 561–580
Constraint equations were differentiated by FEED routines f_const(c,Nt),

f_var(x,i,Nt,tflag), f_mult(x,y,Nt,vflag), f_sin(x,Nv,vflag), f_cos(x,Nv,vflag),
f_atan(x,Nv,vflag), and f_xttc(x,c,Nv,vflag). Matrix A and vector b were ob-

tained through numerical routines for non-holonomic and holonomic con-

straint equations by the routine call [A,b]¼ newAb(Ain, bin, G,xdot,N,

tflag,vflag). The actual acceleration was calculated at each moment by MAT-

LAB� built-in routines for addition, subtraction and multiplication of matri-

ces, as well as computation of generalized inverse matrices.
Specific Main Program

clc; clear; clear functions;

global nU N Nhs Nhr Nns Nnr Nths Nthr Ntns Ntnr;

N¼6;

nU¼2*N;

Nhs¼N; Nths¼1+Nhs+Nhs*(Nhs+1)/2;

Nns¼2*N; Ntns¼1+Nns;

Nhr¼N+1; Nthr¼1+Nhr+Nhr*(Nhr+1)/2;

Nnr¼2*N+1; Ntnr¼1+Nnr;

h¼0.005;

t0¼0;

tf¼5;

w0¼[sqrt(2)/2; 0; sqrt(2)/2; 2; 1; -0.75; 0;

4*atan(1)*sqrt(2); 0; 0; 0; 0.25];

[t,W]¼ode45cte(0artigo50,t0,tf,w0,h,0);
save cartigo5 t W;

Specific Subroutine

function V¼artigo5(t,U);

global nU N Nhs Nhr Nns Nnr Nths Nthr Ntns Ntnr;

xdot¼U(nU/2+1:nU);

A¼[]; b¼[];

x1¼U(1);y1¼U(2);z1¼U(3);x2¼U(4);y2¼U(5);z2¼
U(6);

vx1¼U(7);vy1¼U(8);vz1¼U(9);vx2¼U(10);vy2¼
U(11);vz2¼U(12);

M ¼ ½ 1:00000000 0:00000000 0:00000000 0:00000000 0:00000000 0:00000000 ;
0:00000000 1:00000000 0:00000000 0:00000000 0:00000000 0:00000000 ;
0:00000000 0:00000000 1:00000000 0:00000000 0:00000000 0:00000000 ;
0:00000000 0:00000000 0:00000000 1:00000000 0:00000000 0:00000000 ;
0:00000000 0:00000000 0:00000000 0:00000000 1:00000000 0:00000000 ;
0:00000000 0:00000000 0:00000000 0:00000000 0:00000000 1:00000000 �;

M2¼M^()0.5);
a¼[)9.81*x1;)9.81*y1;)9.81*z1; 0; 0; 0;];
..
.

tflag¼1; vflag¼0;

Nv¼Nhr; Nt¼Nthr;

T¼f_var(t,0,Nt,tflag);

X1¼f_var(U(1),1,Nt,tflag);

Y1¼f_var(U(2),2,Nt,tflag);

Z1¼f_var(U(3),3,Nt,tflag);

X2¼f_var(U(4),4,Nt,tflag);
Y2¼f_var(U(5),5,Nt,tflag);

Z2¼f_var(U(6),6,Nt,tflag);

F¼f_mult(X1,f_sin(f_mult(f_mult(f_const(8,Nt),

f_atan(f_const(1, Nt),Nv,vflag), Nv,vflag),

T,Nv,vflag),Nv,vflag),Nv,vflag)––f_mult(Y1,

f_cos(f_mult(f_mult (f_const(8,Nt),

f_atan(f_const(1,Nt),Nv,vflag),Nv,vflag),

T,Nv,vflag), Nv,vflag) ,Nv,vflag);

Ain¼A;bin¼b;

[A,b]¼newAb(Ain,bin,F,xdot,N,tflag,vflag);

..

.

accel¼a+M2*(pinv(A*M2))*(b)A*a);
V¼[xdot(:); accel(:)];

C. Itiki, J. Jos�e Neto / Appl. Math. Comput. 152 (2004) 561–580 579
References

[1] J.L. Lagrange, M�ecanique Analytique. Jacques Gabay, Sceaux, France, 1989 (reprint of the

1788 original edition), pp. 158–428.

[2] C.F. Gauss, €Uber ein neues allgemeines Grundgesetz der Mechanik, Journal f€ur die Reine und

Angewandte Mathematik 4 (1829) 232–235.

[3] J.W. Gibbs, On the fundamental formulae of dynamics, American Journal of Mathematics 2

(1879) 49–64.

[4] P. Appell, Sur une Forme G�en�erale des �Equations de la Dynamique, Gauthier-Villars, Paris,

France, 1925.

[5] F.E. Udwadia, R.E. Kalaba, A new perspective on constrained motion, Proceedings of the

Royal Society of London A 439 (1992) 407–410.

[6] R. Kalaba, F. Udwadia, R. Xu, C. Itiki, The equivalence of Lagrange�s equations of motion of

the first kind and the generalized inverse form, Nonlinear World 2 (1995) 519–526.

[7] C. Itiki, R. Kalaba, F. Udwadia, Appell�s equations of motion and the generalized inverse

form, in: R.P. Agarwal (Ed.), Recent Trends in Optimization Theory and Applications, World

Scientific Series in Applicable Analysis, vol. 5, World Scientific, Singapore, 1995, pp. 123–143.

580 C. Itiki, J. Jos�e Neto / Appl. Math. Comput. 152 (2004) 561–580
[8] F.A. Graybill, Matrices with Applications in Statistics, second ed., Wadsworth, Pacific Grove,

CA, 1983, pp. 105–148.

[9] C. Itiki, Constrained motion and generalized inverses with applications in biomechanics, Ph.D.

Dissertation, University of Southern California, Los Angeles, CA, 1996.

[10] H. Kagiwada, R. Kalaba, N. Rasakhoo, K. Spingarn, Numerical Derivatives and Nonlinear

Analysis, Plenum, New York, NY, 1986, pp. 1–13.

[11] T.N.E. Greville, Some applications of the pseudoinverse of a matrix, SIAM Review 2 (1960)

15–22.

[12] R. Kalaba, N. Rasakhoo, Algorithms for generalized inverses, Journal of Optimization Theory

and Applications 48 (3) (1986) 427–435.

[13] MATLAB�, Reference Guide. The MathWorks Inc., Natick, MA, August 1992.

[14] J. Jos�e Neto, Introduc�~ao �a Compilac�~ao, Livros T�ecnicos e Cient�ıficos, Rio de Janeiro, Brazil,

1987.

	Complete automation of the generalized inverse method for constrained mechanical systems of particles
	Introduction
	Methods
	General routines for differentiation
	General routine for identification of matrix A and vector b
	General routines for computation of the actual accelerations, velocities and positions
	Compiler

	Example
	Discussion
	Acknowledgements
	Templates
	Specific programs
	References

