
A Free Software for the Development of Adaptive Automata

Hemerson Pistori� � , João José Neto�

�Depto. Engenharia de Computac¸ão – Universidade Cat´olica Dom Bosco
79117-900 Campo Grande, MS, Brasil

�Laboratório de Linguagens e Tecnologias Adaptativas
Escola Politécnica – Universidade de S˜ao Paulo

05508-900 S˜ao Paulo, SP, Brasil

pistori@ec.ucdb.br, joao.jose@poli.usp.br

Abstract. Although recent, adaptive technology is already being used to solve com-
plex problems in areas such as compiler construction, natural language processing,
computational vision and robotics. This papers introduces AdapTools, a free-software
environment that helps the development of solutions based on adaptive automata. Since
adaptive automata generalize finite state and structured pushdown automata, Adap-
Tools may also be used as a tool for the development of traditional automata, as well as
an educational tool.

1. Introduction

The former traces of adaptive devices, which achieved its most general formalization
in [Neto, 2001], appeared in the early work of van Wijngaarden [van Wijngaarden, 1974]. Al-
though van Wijngaarden’s two-level grammars cannot be considered adaptive devices, in the sense
that they do not change its own structure at execution time, all of them increase the representative
power of formal devices, like context-free grammars, without loosing much of its “ease of use”.

The last thirty years witnessed the upcoming of several types of adaptive devices,
all of them adding some self-modifying or dynamic characteristic to a specific formalism,
in order to overcome its limited expressive power. Among them are: modifiable gram-
mars [Burshteyn, 1992]; self-modifying finite automata [Rubinstein and Shutt, 1994] and dy-
namic grammars [Boullier, 1994]. An attempt to generalize the above concepts, capturing
the meaning of adaptiveness and divorcing it from the concept of a subjacent device (e.g.
context free grammars, finite-state automata) gave rise to the formalism called rule-driven
adaptive device. This work paved the way for the construction of adaptive devices based
on subjacent mechanism as diverse as Markov chains [Basseto and Neto, 1999] and decision
trees [Pistori et al., 2003]. Examples of applications of adaptive devices may be found in a variety
of areas, like automatic music composition [Basseto and Neto, 1999], natural language processing,
robotic navigation [Junior et al., 2000], pattern recognition [Costa et al., 2002] and computational
vision [Pistori et al., 2003].

Though most of the adaptive theory is now mature, it still lacks some widely accepted
related software tool. Most works on implementation of adaptive devices developed so far are
deeply attached to specific projects or to specific subjacent mechanisms, and may not be easily
adapted for use in other situations. The present work is a significant attempt in this direction,
represented by the software named AdapTools, described below.

Adaptools is still far from implementing the full generality of the adaptive device the-
ory. Nonetheless, its design foresees many of such extensions. Currently, AdapTools imple-
ments a virtual machine that executes a slightly modified version of the originally described adap-
tive automata [Neto, 1993, Neto, 2000] enhanced with an integrated development environment
containing some graphical visualization, debugging, project maintenance and editing resources.



Adaptools is distributed under GNU’s Public License (GPL), being available at the laboratory of
adaptive languages and technologies’ web site1.

Besides having been designed as a development environment for adaptive devices, Adap-
tools may also be used as an excellent educational tool for disciplines like computer theory and
compiler construction. Since the traditional finite state automata, non-deterministic�-automata
and structured pushdown automata are all specializations of adaptive automata, AdapTools may
be used as a virtual laboratory where the student may practice experimentally the concepts. Several
illustrating examples have been included in the package. One of the most important is a compiler-
compiler that converts a grammar specification, in Wirth notation, of a language�, and produces
an adaptive automaton that recognizes� (this automaton may be simulated by AdapTools); an
extremely simple and powerful prototype of a text-to-speech system and an error-recovery scheme
for handling simple syntactical errors are also available. Adaptools is already being used as an
extra-class educational reinforcement tool in some disciplines of the computer engineering pro-
gram offered in our institution.

The following section presents a brief description and an example of adaptive automata,
as defined in Adaptools. Next, in section 3, an overview of AdapTools features is shown. The last
section is reserved for conclusions and future work.

2. Adaptive Automata - Adaptools Version

Conceptually, an structured pushdown automaton may be regarded as a set of finite-state automata
(called sub-machines) that allows two additional kinds of transitions: sub-machine calls and re-
turns, specifying changes in the flow of execution from one sub-machine to another, with a push-
down stack for holding return addresses. An adaptive automaton is an structured pushdown au-
tomaton that allows dynamic modifications in its set of transitions. Such changes are accomplished
by performing the so-called query, deletion and insertion elementary actions, grouped in adaptive
functions, that are called from and may operate on any transition, before or after its execution.
See [Neto, 1993] for more details.

In Adaptools, the form chosen to represent adaptive automata is a table with seven
columns and four basic kinds of lines: normal transition, sub-machine calls and returns, and query,
deletion an insertion elementary adaptive actions. Aheader column holds names of sub-machines
and adaptive functions. In lines representing elementary adaptive actions, the header also informs
the type of action:�,� or �, for query, deletion or insertion, respectively. The columns forori-
gin and destination states andinput and output symbols have the usual interpretation, except that,
for adaptive functions, they may refer to variables (in order to express patterns), and generators,
representing states that must be created dynamically. Variables and generators are denoted with
prefixes� and�, respectively. The���� column is used in sub-machine calls, to indicate the return
state. Sub-machine returns are indicated by the reserved keyword��� placed in thedestination
state column. The last column, foradaptive action, is used to link a transition to a pair of adaptive
functions and contains a string with the form�	
, where� and
 are names of adaptive func-
tions that are to be executed Before and After the transition (any one of them may be omitted).
The reserved keyword��� may be used anywhere to indicate that the column is not being used.
Empty transitions hold the string��� instead of an input symbol.

In order to avoid extra structures, the initial and final states of an automaton are encoded in
a somewhat cumbersome way: The���� column must have the keyword��when thedestination
state is a final state, and, by convention, theorigin state of the first line of each sub-machine always
denotes its initial state.

Figure 1 shows an adaptive automaton that recognizes the context-dependent language
������, using both Adaptools table representation, figure 1.(c), and a graphical representation for
its only adaptive function, figure 1.(a), and sub-machine, figure 1.(b). The device works as follows:
each time some symbol� is consumed (line 6) the adaptive function� finds the only empty

1http://www.pcs.usp.br/˜lta - download section



� �� ��

�� ��� ��� ��

�

� � �

� �

���

�
� �

� �	� �

�

���

Head Orig Inpu Dest Push Outp Adap
1 �� �� ��� �� �� ��� ���

2 �� �� ��� �� �� ��� ���

3 �� �� � ��� ��� ��� ���

4 �� ��� ��� ��	 ��� ��� ���

5 �� ��	 � �� �� ��� ���

6 � � � � ��� ��� 	�

7 � � ��� � �� ��� ���

���

Figure 1: Adaptive Automaton that Recognizes �
�

�
�

�
�

(a) Adaptive Mechanism (b) Subjacent Mechanism (c) Adaptools Object Code

transition of the automata (line 1), removes it (line 2) and insert two new transitions consuming
the string�� (lines 3 and 5) with and empty transition strategically put between them (line 4).

In the original definition of adaptive automata [Neto, 1993], variables and generators are
explicitly declared and adaptive function calls are allowed to appear inside adaptive functions.
Avoiding such features in AdapTools originates a simpler tabular representation of the machine.
Implicit declaration of variables and generators certainly do not affect the expressiveness of the
device, but an study of the impact of not permitting adaptive function outside the subjacent layer
is yet to be conducted. However, the broad range of cases already implemented in AdapTools,
including regular, context-free and context-dependent languages, suggests that this modification
preserved much of the power of the original device, which is Turing-powerful.

3. Adaptools

Adaptools is a software environment where adaptive automata can be implemented, tested and
experimented. The core of this software is a virtual machine that executes adaptive automata
represented in tabular form, such as the one depicted in figure 1.(c). The execution of transitions
and elementary adaptive actions, as well as the contents of stacks, variables and generators, may be
traced, step by step. A powerful graph drawing tool, based on the ForceDirect algorithm featured
by OpenJGraph package, may be used for the visualization of modifications accomplished by the
automata. The algorithm models nodes and edges as electrical forces and logarithmic springs,
respectively, and uses the physical laws of repulsion and tension to automatically find a balanced
layout for the graph representing the automaton. By allowing human intervention, pretty good
animations are obtained, that really enhance the visualization and comprehension of the devices
being simulated. Another important feature is the simultaneous execution of multiple devices,
by using Java multi-threading resources. An example of this feature, available in the package, is
a parser and a lexical analyzer, that work simultaneously to produce object code for Adaptools’
virtual machine. An enhanced version of this example, which features syntactical error-recovering
capabilities in the generated code is another powerful tool easily generated within AdapTools,
used in compiler construction courses.

4. Conclusions

In this work we introduced a free-software which can be used in, at least, three ways: (1) in the
development of solutions using the powerful emerging technology based on adaptive automata,
(2) as an educational tool for teaching and training in adaptive automata2, and weaker traditional

2A somewhat related case study can be found in [Leonardi, 1999]



formalisms incorporated by them, like finite-state automata and structured pushdown automata
and (3) as the basis for the development of a more general tool that will handle adaptive devices
with subjacent mechanisms other than automata. The development of a generalized version of
AdapTools that works with adaptive decision trees is already in course.

References

Basseto, B. A. and Neto, J. J. (1999). A stochastic musical composer based on adaptative algo-
rithms. InAnais do XIX Congresso Nacional da Sociedade Brasileira de Computaç̃ao. SBC-99.,
volume 3, pages 105–130, PUC-RIO, Rio de Janeiro, Brazil.

Boullier, P. (1994). Dynamic grammars and semantic analysis. Technical Report 2322, INRIA.

Burshteyn, B. (1992). USSA - universal syntax and semantics analyser.ACM SIGPLAN Notices,
27(1):42–60.

Costa, E. R., Hirakawa, A. R., and Neto, J. J. (2002). An adaptive alternative for syntactic pattern
recognition. InProceeding of 3rd International Symposium on Robotics and Automation, ISRA,
pages 409–413, Toluca, Mexico.

Junior, J. R. A., Neto, J. J., and Hirakawa, A. R. (2000). Adaptive automata for independent
autonomous nagivation in unknown enviroment. InProceedings of IASTED International Con-
ference on Applied Simulation and Modelling - ASM 2000, Banff, Alberta.

Neto, J. J., Pariente, C. B. and Leonardi, F. (1999). Compiler construction - a pedagogical ap-
proach. InProceedings of the V International Congress on Informatic Engineering - ICIE 99,
Buenos Aires, Argentina.

Neto, J. J. (1993). Contribuic¸ão à metodologia de construc¸ão de compiladores.Tese de Livre
Docência, Escola Politécnica, Universidade de São Paulo. [In Portuguese]

Neto, J. J. (2000). Solving complex problems efficiently with adaptative automata. InConference
on the Implementation and Application of Automata - CIAA 2000, Ontario, Canada.

Neto, J. J. (2001). Adaptative rule-driven devices - general formulation anda case study. In
CIAA’2001 Sixth International Conference on Implementation and Application of Automata,
pages 234–250, Pretoria, South Africa.

Pistori, H., Neto, J. J., and Costa, E. R. (2003). Utilizac¸ão de tecnologia adaptativa na detecc¸ão
da direç̃ao do olhar. InAnais da Conferencia Internacional de la Sociedad Peruana de la
Computacion SPC’2003, Lima, Peru. [In Portuguese]

Rubinstein, R. and Shutt, J. N. (1994). Self-modifying finite automata. InProceeding of the 13th
IFIP World Computer Congress, pages 493–498, Amsterdam: North-Holland.

van Wijngaarden, A. (1974). Revised report on the algorithmic language algol 68.Acta Informat-
ica, 5:1–236.


