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Abstract

This paper introduces a new algorithm for the induction of decision trees, based on adaptive
techniques. One of the main feature of this algorithm is the application of automata theory
to formalize the problem of decision tree induction and the use of a hybrid approach, which
integrates both syntactical and statistical strategies. Some experimental results are also pre-
sented indicating that the adaptive approach is useful in the construction of efficient learning
algorithms.

keywords Machine Learning, Decision Tree Induction, Adaptive Automata.

1 Introduction

The induction of decision trees from attribute vectors is an important and fairly explored machine
learning paradigm [23]. The majority of the algorithms aiming to solve this problem, like ID3 and
C4.5 [34, 35] works in two different phases: a training phase, where the decision tree is built from
the available instances, and the testing, or performing phase, where new instances may be classified
using the just constructed model. In general, the decision tree is built in a top-down style, using
a greedy strategy to choose, based on the instances corresponding to the sub-tree in construction,
the root of this sub-tree. Most researches in this area concentrate on the search of new methods
to compare attributes and to determine the point where the top-down construction must stop (the
pruning problem). At least two algorithms, ID5 and ITI [31], based on ID3 and C4.5, respectively,
provide incremental capabilities.

In general, most operational machine learning systems currently used, including the ones based
on neural networks and genetic programming, are not incremental. However, many applications
do require, or would benefit from, incremental learning, as for instance, hand-written and speech
recognition, where the final user could incrementaly improve the system performance, by inserting
new training instances. Clearly, any machine learning algorithm could be made “incremental” by
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Figure 1: Two decision trees representing the same function f

rebuilding all the learned model as a new training instance is available, however this solution is
highly inefficient and impractical.

This paper presents a new formalization and strategy to solve the decision tree induction prob-
lem, using concepts from automata theory and adaptive technology [28]. This approach promotes
the use of syntactical techniques, in addition to the statistical ones, aiming at the construction
of less opaque, or easier understandable, models. The adaptive technique, detailed in section 3,
facilitates the specification of devices whose internal structures tends to change over time, as new
external stimuli are provided. Besides, the technique boosts that re-utilization of well-known, static
formalisms. Adaptree is a decision tree induction algorithm specified as an adaptive finite state
automata, extended with some non-syntactical characteristics to handle continuous features and
statistical generalization. Adaptree can be incrementaly trained to solve classification problems.

The reminder of this work is organized as follow: in the next section decision trees and induction
algorithms are reviewed. Then, the adaptive theory is presented, as well as one of its particular
cases: the adaptive finite state automaton. The algorithm constructed using this new technique
and some experimental results appear in section 4 and 5, respectively. At last, conclusions and
suggestions for future work are related.

2 Induction of Decision Trees

Decision trees are a way to hierachicaly represent discrete functions over N L f(N,L)

0 a yes
0 b yes
1 a no
1 b no
2 a yes
2 b no

Table 1: Function f

multiple variables. This hierarchical characteristic makes decision trees very
suitable for human inspection and utilization. The internal nodes of a de-
cision tree represent tests to be applied over some variable X. Departing
from each internal node are edges that represent possible values for X. The
function range is represented in the tree’s leaves. In order to calculate the
function value using a decision tree, one must find a path from the root to
a leaf, using the variable values to choose from different descending edges.
The function value will be on this leaf. For example, any of the decision trees
shown in figure 1 may be used to represent the function, f : N × L → C,
depicted in table 1, where N = {0, 1, 2}, L = {a, b} and C = {yes, no}.

In the case of continuous variable, the tests in the edges are usually represented as simple
intervals, like X ≤ 2.23 and X ≥ 5.6, with a discretization step being conducted during, or just
before, the learning phase. The handling of continuous values in the functions range (tree’s leaves)
requires much more elaborated strategies, like the regression [33], model [18] and hybrid [40] trees.
In the regression trees, the leaves simply keep the average function value, given the restriction
represented in the internal nodes. The model trees generalizes the regression trees by admiting the
existence of any linear classifier in each leaf. Hybrid trees are even more general, as they associate
each leaf to an artificial neural network. This work concentrates on the still more popular discrete
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decision trees.

2.1 Algorithms for the Induction of Decision Trees

An important problem in machine learning is the construction of a decision tree to represent an
unknown function f , given a usually not proper subset T of f . The f function is denominated, in the
machine learning jargon, the target concept, while the decision tree resulting from the application
of an induction algorithm is named an, possible not accurate, target concept representation. Each
element of the T set, or training set, is a training instance or an attribute vector. In the non-
incremental approaches, the training set and the target concept representation are, respectively,
the input and output of the induction algorithm.

Most decision tree induction (DTI) algorithms follow the same overall strategy of building the
tree from the root, partitioning the training set according to the tests chosen for that node, and
recursively building a subtree for each test value. The partition used to induce any new subtree
gets smaller at each recursion, leading to worse induction estimates for decisions near the leaves.
This kind of problem is frequent in algorithms based on local optimization, which is not the case
of our proposal.

The first distinguishing feature of DTI algorithms is the way that attributes (variables) are
compared when choosing a subtree root. Most comparison approaches, like information gain [34]
and χ-square statistic [24], aim at increasing the chances of constructing the smaller (in number
of nodes) decision tree that correctly represents the available instances. The preference for smaller
trees are based on the Occam Razor [16] principle, which suggests that between two equally sat-
isfactory explanations, the most simple should be chosen. A systematic analysis of this principle,
that seems to permeate the process of scientific discovery, can be found in [16].

Another well explored feature of a DTI algorithm is the criteria used to decide when the decision
tree should stop growing and branching: the pruning strategy [17]. Decision trees that perfectly
adhere to the training set can suffer from the overfitting problem: when the learned model do not
generalize well to the testing set. The pruning can happen during the growing phase, using some
heuristic metric to prevent the tree from growing beyond a predetermined level, or by letting the
tree grow to its maximum height and then “post-pruning” it, usually basing the decision on the
classification performance measured over an independent instance set [23]. An interesting study
showing that pruning is just another kind of generalization bias and that may, in fact, be prejudicial
to some group of problems, can be found in [36, 37]. The algorithm presented in this paper is an
example of how an unpruned decision tree may ensue good performances on well known benchmark
datasets.

3 Rule-Driven Adaptive Devices

A recurrent question in computer science is how to balance expressiveness and clearness when
proposing a new representation scheme for algorithms and problems. A Turing machine, for in-
stance, is a very expressive formalism, however, it can hardly be used in the solution of real problems
as its application is, at least, uncomfortable. Finite state automata, on the other hand, are easy to
use, but lacks the expressivenes of the Turing machines.

The emerging technique called rule-driven adaptive devices [27, 28] approaches the problem of
expressiveness versus clearness by empowering a simple, but not much expressive subjacent device,
as a finite state automata, with an adaptive layer. This adaptive layer, which preserves much of the
subjacent mechanism syntax and semantics, consists of deletion and insertion actions that operates
on the subjacent mechanism rules (e.g. transitions for automata and productions for grammars)
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and may be started during the subjacent mechanism operation. In this way, the initial static
structure of the subjacent device becomes dynamic, but with the very desirable property that this
dynamism is, in great extent, expressed in terms of the subjacent formalism. Adaptive technique is
already being applied in the solution of problems in areas as diverse as grammatical inference [29],
automatic music composition [3], natural language processing [8], robotics [22, 6] and computer
vision [32].

3.1 Adaptive Finite State Automata

An adaptive finite state automaton (A -FSA ) is an adaptive device that extends the expressive
power of the well-known finite state automaton. Informally, an A -FSA is just an FSA that can
change its transition and state set during input reading. It is important to note that an A -FSA
is not an adaptive automata [26], as the subjacent device of the later consists of the slightly more
complex, structured pushdown automata [30]. This simpler device, however, preserves the Turing-
powerful expressiveness of adaptive automata: the proof of expressiveness for adaptive automata
may be trivially adapted to finite state automata [21], as none of the extensions introduced by the
structured pushdown automata formalism, in relation to the finite state automata, is used in the
proof. Besides using a simpler subjacent device, the present work also proposes some simplifications
to the adaptive layer, which may now be fully formalized in set theoretic and algebraic terms.
Formally, A -FSA are 8-uples M = 〈Q, Σ, q0, F, δ, Q∞, Γ, Π〉 where the first five elements refer to
the non-adaptive formal mechanism (an FSA):

Q ⊆ Q∞ is a finite subset of a possible infinite state set.

Σ is the input alphabet, finite and non-empty.

q0 ∈ Q is the initial state of the automaton.

F ⊆ Q is the final state set.

δ ⊆ (Q∞ × (Σ ∪ {ε}) × Q∞) is the transition relation.

The last three elements of M, representing the adaptive layer, are defined as follow:

Q∞ is a possibly infinite state set.

Γ ⊆ ({+,−} × (Q∞ × (Σ ∪ {ε}) × Q∞)) is the set of elementary actions, where the plus signal
stands for insertion and the minus for deletion.

Π : (Q∞ × (Σ ∪ {ε}) × Q∞) → Γ∗ is the function that maps each transition in δ to a sequence of
elementary adaptive actions. Normal transitions, those that should not start adaptations, are
mapped to the empty sequence.

For each transition x ∈ δ where Π(x) = ε, the A -FSA functionally reduce to simple FSA (non-
deterministic). Otherwise, the A -FSA must first execute the sequence of elementary adaptive
actions, and then the transition 1. After the execution of the adaptive actions, the A -FSA starts
to operate on its new structure. The notion of computation for an A -FSA takes into account
the possible changes occuring during execution: a configuration is any element (q, w, K, ∆) from

1The adaptive device formulation allows for the use of “after actions”, however, its is proven that this feature do
not increases the expressiveness of the device [21].

4

CLEI ELECTRONIC JOURNAL, VOLUME 6, NUMBER 1, PAPER 4, DECEMBER 2003



q0 q1

aΠ

ε
q0 n0 n1 q1

aΠ

b ε c
q0 n0 n2 n3 n1 q1

aΠ

b b ε c c

(a) (b) (c)

Figure 2: Adaptive Automaton that Recognizes anbncn

(a) Initial Configuration (b) After first adaptation (c) After second adaptation
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aΠ, bΠ, Y Π

Figure 3: A -FSA M with an state qf intentionally unreachable)

Q∞ × Σ∗ × 2Q∞ × 2(Q∞×(Σ∪{ε})×Q∞), where q ∈ Q∞ is the current state, w ∈ Σ∗ is the part of the
input string not read yet, K ∈ 2Q∞ is the set of states referenced in the current transition set and
∆ ∈ 2(Q×(Σ∪{ε})×Q) is the current transition set. The ordered pair (C1, C2) of configurations, with
C1 = (q, w, K, ∆) and C2 = (q′, w′, K ′, ∆′), is an element of the binary relation `M (step relation)
if, and only if, w = aw′ for some a ∈ Σ ∪ {ε}, δ(q, a) = q′ and the adaptive actions, Π((q, a, q′)),
modify the state set K and the transition relation ∆, to K ′ and ∆′, respectively. A string w ∈ Σ∗

is accepted by M if, and only if, exists an state q ∈ F such that (q0, w, Q, δ) `∗
M (q, ε, K ′′, ∆′′), with

K ′′ and ∆′′ being any set of states and transitions.

3.2 An A -FSA that recognizes a context-dependent language

Figure 2.(a) represents an A -FSA M = 〈Q, Σ, q0, F, δ, Q∞, Γ, Π〉 that recognizes the classical context-
dependent language anbncn. The superscripted Π, in figure 2, denotes an association of a transition
to a sequence of adaptive actions, in this case:

Π((q0, a, q0)) = {(−, p, ε, q), (+, p, b, p′), (+, p′, ε, p′′), (+, p′′, c, q)}, ∀p, q ∈ Q, p′, p′′ 6∈ Q (1)

The subjacent mechanism keeps reading the symbols a and calling the sequence of adaptive
actions for each symbol a read. The adaptive actions associated to the transition (q0, a, q0) may
be interpreted as: seek the ε transition (here working as a mark) and replaces it by a pair of
transitions that reads the substring bc. The ε transition mark is kept between the transitions that
read b and c, so that when the i-th a is read, the automaton will have a sequence of transitions that
are able to consume the sequence bici. Figures 2.(b) and 2.(c) shows the automaton after reading
two consecutives a.

3.3 An A -FSA that memorizes strings

This examples illustrates a simple A -FSA that shapes the core of the decision tree inductor that will
be presented further. Basically, it reads positive examples of strings from an “unknown” language,
adapting itself to memorize this strings in a prefix-tree like structure. The automaton alphabet is
Σ = {a, b, Y }, where Y (from Yes) will be sufixed to the strings that should be learned (memorized).
Strings not sufixed with an Y are to be classified (accepted or rejected). A string w = w ′α, with
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Figure 4: M after reading a

q2 q3
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Figure 5: M after reading aS

α ∈ Σ and α 6= Y , will be accepted by M iff M had already read the “training” string wS. For
instance, given the sequence ab , abS , ab , aa, the automaton rejects the first occurrence of ab,
learns ab (after reading abS), accepts ab and finally, rejects aa (as it had not learned aa yet). It
should be clear, from this example, that what is being explored here is the ability of the formalism
to handle context dependency.

Figure 3 shows the subjacent structure of the automaton M = 〈Q, Σ, q0, F, δ, Q∞, Γ, Π〉, where
Q = {q0, q1, qf}, Σ = {a, b, Y }, q0 = q0, F = {qf}, δ contains the transitions presented in figure 3,
Q∞ = {qf , q0, q1, q2, ...}, Γ = ({+,−} × (Q∞ × (Σ ∪ {ε}) × Q∞)) and the Π function is defined
below, with q′ e q′′ in the equation 2 being used to indicate two states in Q∞ − Q (states that are
not in the current state set). Empty transitions, or marks, used to “boot” the automaton to the
initial state (but keeping all adaptations) after each string read, are omitted from this model in
order to keep the example more readable.

Π(qi, α, qj) = {(−, qi, α, qj), (+, qi, α, q′), (+, q′, β, q′′)}, ∀α ∈ {a, b}, qi 6= qj , β ∈ Σ (2)

Π(qi, S, qj) = {(+, qi, ε, qf )}, ∀qi 6= qj (3)

Figures 4 and 5 show the automaton M after reading a and S, respectively. Notice that the
automaton would reject string a in its initial configuration (figure 3), but would accept it after
reading aS (rejecting any other string, as a is the only string learned).

4 Adaptree - Adaptive Decision Trees

In this section a novel way to formalize the decision tree induction problem, based on automata and
languages theories, is presented. The general idea is to handle each training and testing instance
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as a string and consider the decision tree itself as a special kind of adaptive finite state automaton,
with the initial state of this automaton corresponding to the root of a classical decision tree.

The target concept is a language L where all the strings have the same size: the number of
attributes, including the class. Given n sets A1, A2, ..., An, the training set is T = {w1, w2, ..., wm},
where |wi| = n and wi = α1α2...αn with αj ∈ Aj , for 1 ≤ j ≤ n and 1 ≤ i ≤ m. The last symbol
of each string always represents the class value, hence, |An| is the number of classes and n − 1 the
number of attributes to be considered during learning. The A1, A2, ..., An sets represent attributes
domain. The size of a testing string is n − 1 (no class value).

The adaptree is basically the A -FSA that memorizes strings, presented in the previous section,
with an additional probabilistic layer that allows adaptree’s to generalize beyond the training set.
In order to discriminate multiple class values, the automaton will have one different final state
for each possible class value. During learning, the adaptree creates a path from the initial state
to the final state corresponding to the last symbol of the training string (the class), using the
mechanism showed in section 3.3. When reading a testing string, adaptree may end up in a final
state, classifying the string (the final state is the class), or may stop at a non-final state. In this
case, the statistical inference mechanism is issued. This mechanism is presented in the next section.

4.1 Generalizing from the training set

When the A -FSA stops before reaching a final state, the automaton, which have a tree-like
structure, proceeds its execution following all possible paths from that state on. The informa-
tion represented by each final state reached in this ‘non-deterministic’ execution are counted, an
the most frequent class value is returned as the testing string classification. Given a testing in-
stance w = α1, α2, ..., αn and assuming that the automaton stopped when reading αi, i < n − 1;
the returned class c corresponds to the most probable class given α1, α2, ..., αi, with estimates for
p(αn = an|α1, α2, ..., αi), ∀an ∈ An, being taken from the training strings presented to the automa-
ton until that moment.

It is important to note that the quality of the above estimates is highly dependent on the i

value, or on how far from the initial state (the root) the automaton stopped. The higher i the
lesser the number of training instances the estimates will count on. However, on the other hand,
less information about the testing instance will be used. When i = 0, for instance, all training
instances will be counted, as all the tree will be traversed, however, no attribute value will be
considered. The order of the attributes is also important, as the attribute in the root will be used
more frequently then the one in the next level, and so on. Optionally, the attributes of the datasets
can be reordered using some attribute quality measure, as information-gain [35], before the learning
starts.

Table 2 compares the classification performance of adaptree using the default order and infor-
mation-gain reordering. The numbers represent the average percentage of correct results using a
random split test with 66% for training and the remainder for testing. Each experiment where
repeated 10 times and standard deviations are shown in brackets. The plus and minus signs,
respectively, indicate significantly (t-test at 95% confidence level) better and worse performance
of the reordered over the not-reordered versions of adaptree. All datasets where taken from and
are described at the widely used UCI machine learning repository [4]. As expected, the benefits
of reordering are highly dependent on the dataset, but in most cases (19 out of 33), it does not
affect the performance of adaptree ( prejudicing it in two cases). As the reordering do affect the
incrementality of the overall strategy - the automaton should be reconstructed after a reordination
- the use of the default order should always be considered when using adaptree.
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4.2 Adaptree and Incremental Learning

The core of the adaptree learning strategy, including the generalization mechanism based on condi-
tional probabilities estimates, which are calculated dinamicaly, is incremental. Hence, the training
and testing instances could be presented one by one, interchangeably. In fact, the strategy could
also be viewed as a different kind of instance-based learning [1], with some resemblance to the
approaches based on k-d trees [39]. However, if the attributes are to be reordered, the automaton
should suffer some major modifications from time to time.

Datasets containing continuous value attributes should also present a problem to the incre-
mentality of adaptree, at they must be previously discretized. In the current implementation, the
Fayyad and Irani’s discretization method [14] is automatically performed on each continuous fea-
ture present in the dataset, before the learning takes place. This method employs a supervised (use
class information) approach based on recursive entropy minimization and a minimum description
language (MDL) stopping criteria, and so, depends on the existence of some training examples.

5 Experimental Results

The adaptree was implemented using the Waikato Environment for Knowledge Analysis (Weka) 2,
a software package that aids the development of machine learning and data mining systems. Be-
sides implementing several machine learning algorithms, in Java, Weka encompass a set of basic
routines that can be reused in the construction of new algorithms. Among them are routines to
handle attribute vectors, probability distributions, dataset filters, decision trees and artificial neural
networks, to name a few.

Another powerful Weka’s resource is the experiment environment, where different machine learn-
ing algorithms can be compared using a variety of metrics and statistical tests. Using this resource,
adaptree was compared to Id3 [35], Naive Bayes [10], C4.5 [35], 5NN [25] (K-Nearest Neighbour
with K = 5) and Artificial Neural Networks trained by backpropagation [25]. Default Weka’s pa-
rameters where used for all algorithms and the statistics where obtained by averaging 10 executions
of the 10-Fold Stratified Cross-validation test, given a total of 100 execution for each algorithm over
each dataset.

All datasets are in public domain and were extracted from the UCI machine learning reposi-
tory [4]. The first, one of the most cited dataset in machine learning bibliography [15, 11, 7, 19, 12],
has 150 instances of 3 different kinds of Iris, classified from 4 numeric attributes describing sepals
and petals widths and lengths. The Ionosphere dataset contains 351 instances and 34 attributes rep-
resenting data gather from a radar that detects the presence of free electrons in the ionosphere [38].
Two datasets from the medical area, hypothyroid (3772 instances, 30 attributes) and hepatitis [9, 5]
(155 instances, 20 attributes), and another one, glass, representing a problem of glass type classifi-
cation that can be used in criminal investigation [13], completes the experiment. This five datasets
where chosen at random from the ones used in the reordering experiment.

Table 3 shows percentage-correct rates and average training time (in seconds) obtained through
Weka, for each algorithm and dataset compared. The results indicate no significant performance
difference (greater than 2%) from adaptree and the other algorithms in the iris and hypothyroid
datasets. Backpropagation is significantly better in the other datasets, however, adaptree performs
well in relation to the other algorithms. It is worth noting that backpropagation’s training time is
tremendously higher.

2Free software available at http://www.cs.waikato.ac.nz/ ml/weka/
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An important result, shown in table 3, is adaptree’s superiority over Id3, the only one among
the five tested algorithms that, as adaptree, do not handle continuous values intrinsically: the
same discretization filter were used for adaptree and Id3. As to the execution time, tables 3 and
4 indicate the adaptree’s performance is comparable C4.5’s, both in training an testing. The time
values shown in the tables were obtained from the average time of the 100 runs, on the same
hardware and software platform: Penthium III CPU, 700Mhz and 257Mb RAM. Table 4 indicates
that the greater decision tree size generated by adaptree, in relation to Id3 and C4.5, do not
compromise execution time.

It is important to note that all the algorithms could be improved using different parameters
fine-tuning to each dataset. In order to prevent from this kind of bias, adaptree was not fine-tuned,
and the same version and parameters were used in all runings.

6 Conclusions and Future Work

In this paper we presented a new algorithm for decision tree induction whose performance rivals
some well-known machine learning algorithms. One important feature of this algorithm is a new
formalization approach, based on automata theory, enriched by adaptive techniques. This approach
links the usual decision tree learning techniques and automata theory, paving the way for the
construction of other solutions from the interaction of this two areas. Some interesting research
may result from applying the grammatical inference techniques [2, 20] to the decision tree induction
framework, and vice-versa.

Although adaptree’s core is incremental some further research must be conducted in order to
study the impact and search alternatives for handling continuous values. An experimental work
involving the utilization of adaptree in a prototype system implementing eyes-gaze interaction
is described in [32]. This prototype, which intermix machine learning, adaptive automata and
computer vision techniques, is a tic-tac-toe game that can be trained to be played via eyes gazing.
Images are captured using a webcam placed over the computer monitor and directed at the user
face. Even after training, the user may correct wrong throws, due to miss-classifications of the
eyes image, by pointing and looking at the right place and instructing the system to collect more
training instances. This system is a good example of how incremental learning may be important.
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Dataset Default Attribute Re-ordering using
Order Information Gain

anneal.ORIG 79.11( 2.43) 84.1 ( 2.42) +

anneal 99.44( 0.41) 95.74( 3.02) -

audiology 53.12( 4.91) 66.88( 7.28) +

autos 63.29( 6.8 ) 75.14( 6.07) +

balance-scale 75.61( 4.33) 75.61( 4.33)

breast-cancer 64.54( 5.37) 65.88( 3.52)

wisconsin-breast-cancer 94.16( 1.43) 94.2 ( 1.38)

horse-colic.ORIG 66.64( 3.37) 68.24( 4.2 ) +

horse-colic 75.36( 2.61) 79.52( 3.72) +

credit-rating 69.4 ( 3.05) 82 ( 2.48) +

german-credit 68.32( 2.45) 68.21( 1.89)

pima-diabetes 73.87( 2.56) 74.06( 2.59)

Glass 55.07(11.71) 58.49( 9.29)

cleveland-14-heart-diseas 78.16( 3.86) 77.77( 3.67)

hungarian-14-heart-diseas 77.3 ( 2.79) 78.5 ( 2.59)

heart-statlog 77.72( 4.14) 78.26( 3.28)

hepatitis 77.92( 4.96) 76.98( 4.43)

hypothyroid 97.88( 0.3 ) 98.16( 0.42)

ionosphere 89.58( 2.14) 84.87( 2.8 ) -

iris 91.96( 5.43) 93.92( 3.26)

kr-vs-kp 79.79( 1.39) 96.32( 0.65) +

labor 75.79(12.21) 86.84( 7.94) +

lymphography 71.2 ( 4.54) 75.4 ( 5.08)

mushroom 99.68( 0.15) 100 ( 0 ) +

primary-tumor 27.04( 2.79) 32.87( 6.01) +

segment 71.57( 2.37) 89.97( 1.92) +

sick 96.44( 0.49) 97.57( 0.27) +

sonar 68.45( 5.68) 65.07( 6.33)

soybean 43.41( 2.68) 82.37( 2.43) +

vehicle 63.61( 2.73) 63.58( 3.23)

vote 90.14( 2.59) 94.32( 1.53) +

vowel 76.17( 3.35) 74.87( 2.42)

zoo 40.88( 5.27) 40.88( 5.27)

Table 2: Adaptree with and without attribute reordering
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Dataset Adaptree Id3 NBayes 5NN C4.5 Backpro

iris 93.92% 89.22% 93.33% 92.75% 94.31% 93.08%
(0.03s) (0.88s) (0s) (0s) (0.01s) (1.83s)

ionosphere 86.72% 84.29% 90.76% 89.58% 87.39% 93.84%
(0.66s) (2.09s) (0.03s) (0.01s) (0.48s) (74.66s)

hypothyroid 92.22% 90.12% 92.78% 93.28% 93.41% 94.57%
(5.18s) (29.05s) (0.17s) (0.07s) (4.37s) (830.67s)

hepatitis 76.6 % 70.75% 84.15% 81.13% 80.75% 82.39%
(0.1s) (1.23s) (0s) (0s) (0.06s) (10.5s)

Glass 52.47% 47.95% 52.19% 53.42% 52.47% 68.95%
(0.07s) (5.86s) (0.01s) (0s) (0.11s) (10.71s)

Table 3: Correct answers percentage and average classification time (in brackets)

Dataset Adaptree Id3 NBayes 5NN C4.5 Backpro

iris 0s 0s 0.01s 0.05s 0.01s 0.01s
ionosphere 0.01s 0.01s 0.04s 1.3s 0.01s 0.13s
hypothyroid 1.3s 0.11s 0.45s 184.48s 0.07s 1.17s
hepatitis 0s 0s 0.01s 0.18s 0s 0.02s
Glass 0.01s 0s 0.02s 0.37s 0.01s 0.01s

Table 4: Average time to classify an instance
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