
Adaptive Automata for Mobile Robotic Mapping

Miguel Angelo de Abreu de Sousa André Riyuiti Hirakawa João José Neto
      miguel.sousa@poli.usp.br andre.hirakawa@poli.usp.br joao.jose@poli.usp.br

Escola Politécnica da Universidade de São Paulo
Departamento de Engenharia de Computação e Sistemas Digitais

Av. Prof. Luciano Gualberto, travessa 3, nº 158. São Paulo - SP - Brasil - CEP 05508-900

Abstract

Robotic mapping deals with the question of building
abstract representation of the physical environment
around a mobile robot and it is one the most important
features of a truly autonomous mobile robot. This work
presents an adaptive way to make such representation
without a priori knowledge of the environment. Starting
with a small net and through simple reconfiguration
rules, this net is expanded by acquiring the map of the
place while the robot travels. The initial configuration
contains free marks, which are replaced with
information acquired by the sensors. This paper also
presents an adaptive algorithm for exploring motion.

1. Introduction

Early approaches for solving the motion problem in
mobile robots used to employ a preliminary map of the
environment stored in the robot’s memory. Such
approach presents three main problems [2]: the first
one refers to its computational complexity. Storing a
complete geometrical map of the environment,
searching the database for localization and path
planning process increase the computational
complexity. This problem makes this approach
prohibitive for real implementations. The second
question is related to the requirement of repetitive task
of the non-automatic mapping process before the
robot’s work in a variety of unstructured environments.
Each house, factory, street, office, hotel, hospital and
agricultural field where the robot is intended to work
has to be mapped and the resulting map must be
manually registered in its memory. Finally, robots may
have to work in unknown and hazardous environments.
Mining, undersea operations, working in disaster areas,
space and planetary exploration are examples of
possible tasks in which robots have to map the field
before being able to work properly.

Due to those reasons, robotic mapping has been a
strongly researched topic in robotics and artificial
intelligence for two decades and is still an interesting
research subject. For instance, the mapping process of
dynamic or large areas is still challenging [9]. The
present work employs an adaptive mechanism to
collect information from the environment and organize
this information as a map for further use in navigation.

Adaptive automata, proposed by [7], are able to
reconfigure themselves. Consequently, their behavior
may be changed according to externally collected
information. In this mapping application, adaptive
automata start from a simple initial model, and change
their structure according to the properties of the field
around. The adaptive feature allows the proposed
mechanism to map the environment without a priori
knowledge of the place and also allows memory space
occupied just grows up accordingly to the already
mapped area. Such adaptability represents an intuitive
and trustful way for modeling the physical environment
during the robot’s motion.

The following section briefly reviews previous
works in the area. Section 3 sketches the adopted
formalism. Section 4 presents the system, which
includes the exploring motion automaton and the
mapping automaton.  Sections 5 and 6 describe details
of the implementation of the automata for this
application. Finally, the last two sections describe
simulation results, conclusions and future works.

2. Related Work

Since the early 80’s robotic mapping research area
was conducted by using two approaches, namely,
topological and metrical. While metric maps represent
the environment by using its geometric properties [4]
[8], topological ones describe environments by
expressing the connectivity of their distinct spaces [2]
[6]. Nevertheless, the exact frontier between these
approaches has never been clearly stated, since



topological maps rely on geometric information about
the world [9].

This paper describes some interesting results
achieved by extending a previous work on the
representation of physical environments by using
adaptive automata [5].

Adaptive automata’s learning capability is due to
their reconfigurable behavior, turning them suitable for
representing knowledge and for implementing learning
features. It has been shown that adaptive automata are
Turing-powerful devices [7], which allow the system to
store and handle gathered information by using rather
simple rules. Adaptive devices have also been applied
in several other applications, such as pattern
recognition [3] and systems description [1].

3. Adaptive Automata

Adaptive automata may be viewed as self-modifying
state machines whose structure includes a set of states
and a set of transitions interconnecting such states.
States may be classified in: initial state (S); a set of
final states (F); and a set of intermediate states.
Incoming stimuli change the internal state of the
machine.

The self-modifying feature of adaptive automata is
due to the capability it has of changing its own set of
transition rules. Adaptive actions may be attached to
the transitions which are able to either add new states
and transitions or remove already existents ones,
consequently, achieving a new structure. Hence,
incoming stimuli may change the set of internal states
and modify the general configuration of the automaton.
See [7] for details on concepts and notation.

Transition rules in adaptive automata are
represented as:

( g , e , a ) : B → ( g’ , e’ , a’ ) : A

g:  push-down store contents before the transition;
g’: push-down store contents after the transition;
e:  current state before the transition;
e’: current state after the transition;
a:  input stimulus before the transition;
a’: input stimulus after the transition;
B: adaptive action before applying the transition;
A: adaptive action after applying the transition.

Whenever g, g’ and a’ are all omitted, the
representation may be simplified to:

( e , a ) : B → e’ : A

A graphic representation of the transition is the
following:

Figure 1. Adaptive automata transition.

Adaptive actions A and B are both optional. Three
different elementary adaptive actions are allowed:
inspection – search the current state set for a given
transition; deletion – erase a given transition from the
current state set; and insertion – add a given transition
to the current set of states. Such actions are denoted by
preceding the desired transition by the signs  ?,  –  and
+,  respectively.

4. The Model

The present paper describes the proposal of
modeling robotic mapping and exploring motion by the
use of adaptive automata. The model proposed is
depicted in figure 2:

Figure 2. System model.

In this proposal, an information management system
receives data from the sensors and transfers pre-
processed information to the exploring motion
automaton, which is designed to make decisions on the
next move to be performed by the robot. Such
decisions are based on: data coming from the sensors;
the current neighborhood information extracted from
the mapping subsystem; and the motion-controlling
algorithm. The motion decision is transferred both to
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the motion system that controls the actual motors and
to the mapping automaton.

The mapping subsystem is responsible to store all
the sensor information on the presence or absence of
obstacles close to the robot during its travel. The
current environment place corresponds to the current
state in the mapping automaton.

5. The Mapping Automaton

The proposed method for the adaptive robotic
mapping starts from a square lattice (see figure 3)
consisting of nine nodes connected by special
transitions denoting areas yet to be mapped
(represented by the states and transitions of an adaptive
automaton). The central state is the initial state of the
automaton, and represents the starting point of the
robot’s exploring path. In order to allow a clear
presentation of the method, a graphic representation of
the adaptive automaton will be used, as described in
section 3.

Figure 3. Initial lattice in an adaptive automaton.

The dot-marked state (  ) corresponds to the actual
position of the robot and single lines represent areas
not yet mapped.

In order to complete the representation of the initial
automaton, special tags (X) mark corner states, and
special transitions are provided for supporting
expansions in the lattice as shown in figure 4.

Figure 4. Complete initial automaton lattice.

Once the automaton is supplied with the four-data
information collected by the robot’s sensors while it
performs its exploring motions, the four adjacent non-
filled transitions are properly replaced according to that
information (see figure 5). The information collected
by the sensors contain indications on the direction –
north (N), south (S), east (E) or west (W) – and
condition – free or busy. Double arrows indicate non-
obstructed areas and bold lines denote obstructed ways.

Figure 5. The 16 possible information collected by the
sensors.

Following the information collected by the sensors,
the exploring automaton supplies the mapping
automaton with the next move to be performed by the
robot. Such move may be N, S, E or W and is
conditioned to the availability of some appropriate free
way in the lattice. As the robot moves (such occurrence
is represented by some consistent state change in the



automaton), the current lattice is expanded in the
direction of the move. This expansion is performed by
adding of a line or a column to the existent lattice.

Figure 6 exemplifies the result of an N-move, after
reconfiguring the vacant marks corresponding to all
free directions.

Figure 6. Expanded lattice after an N-move.

Concluding the changing operation, adaptive actions
set new marks to the vertex nodes in the lattice and new
auxiliary transitions supporting lattice expansions as
shown in figure 7 (note that figure 7 shows a similar
configuration to the figure 4 but contains registered
some information about the place):

Figure 7. Operation completed.

6. The Exploring-Motion Automaton

An adaptive automaton is used for determining the
robot’s next move. For this purpose, it is supplied with
information collected by the sensors and with
neighborhood information previously modeled in the
map. Its operation allows the robot to cover the entire
environment by describing a zigzag path: starting in a
corner of the environment, for instance, the robot

follows the wall until it finds another corner. Then, it
turns around and comes back in a parallel way.

Such adaptive automaton may be textually described
as follows (note that most transitions are similar to
finite-state automata’s, but they call functions A, B, C
and D. So they constitute adaptive transitions
performing the corresponding adaptive actions,
described ahead):

S = 3; F = { 22 };
P={ (3,a) →4,
(3,n) →5, (4,b) →6,
(4,s) →7, (6,c) →6,
(6,d) →9, (6,o) →8,
(9,m) →9, (9,g) →9,
(9,p) →9, (9,v) →9:A(9),
(8,f) →10, (8,m) →11,
(10,t) →10, (10,p) →10,
(10,q) →10:B(10), (11,g) →11,
(11,p) →11, (11,q) →11:A(11),
(7,c) →7, (7,o) →7,
(7,f) →12, (12,g) →12,
(12,p) →12, (12,q) →12:B(12),
(7,m) →13, (13,g) →13,
(13,p) →13, (13,q) →13:C(13),
(5,b) →5, (5,c) →5,
(5,d) →5, (5,f) →5,
(5,t) →14, (14,p) →14,
(14,v) →14:C(14), (5,g) →15,
(15,p) →15, (15,v) →15:A(15),
(10,u) →16, (16,q) →17:B(17),
(12,u) →18, (18,q) →19:B(19),
(13,u) →20, (20,q) →21:D(21)}

The modifications performed by the adaptive
actions A, B, C and D are described as follows:

A(e){: B(e){:
 +[(e,#) →22]  +[(e,#) →22]
 +[(1,S) →2]}  +[(1,N) →2]}

C(e){: D(e){:
 +[(e,#) →22]  +[(e,#) →22]
 +[(1,E) →2]}  +[(1,W) →2]}

The output information generated by this automaton
indicates in which direction – north (N), south (S), east
(E) or west (W) – the robot is going to move. The
manager system supplies the mapping automata with
the information collected from sensors followed by this
direction information.



7. Simulation

Simulations of the environment, sensors and motion
have been implemented in order to validate the
proposed map-building mechanism. Figure 8 shows
one of such artificial environments created for this
experiment.

The initial configuration of the mapping automaton
has been presented in figure 3 and contains no
information on the environment. The final
configuration is presented in figure 9. Such
configuration is reached after the robot had completed
all the path imposed by the exploring motion
automaton and after the mapping automaton expanded
the initial lattice modeling the characteristics of the
environment, i.e., mapping. The robot is initially placed
in the leftmost upper square in the simulator (identified
as ‘X’ marked cell in figure 8) and the exploring
motion automaton directs it until the rightmost upper
square (identified with the dot-marked state (   ) in
figure 9).
Hence, as presented in figure 9, the memory space used
to store the maps acquired in the present work
increases with the actual mapped area. Note that in this
arrangement the memory space required is proportional
to the product of the maximum vertical variation by the
maximum horizontal variation of space already visited.

8. Conclusion and Future Work

Robotic mapping is an important process for getting
truly mobile robots and is also an essential feature to
allow robots to complete certain tasks in unstructured
and unknown environments.

This work has shown an alternative to the classic
mapping approaches: adaptive algorithms provide a
new way to build such map. A lattice-shaped adaptive
automaton grows dynamically in response to the
robot’s motion. Sensors attached to the robot scan the
environment for the presence or absence of close
obstacles, and such information is collected into the
model by enabling the automaton to perform
appropriate self-modifications.

The present proposal has the advantage of building
a map without a priori knowledge of the environment
and the use of memory space increases with the
actually mapped area. These features contrast with
some classic approaches (e.g., [4], [6], [10]).

Future works should deal with optimizing the
representation of the working segment in the acquired
map, approaching the navigation problem by using the
optimized map segment and handling dynamic

obstacles by exploring the adaptive feature of the
formalism.
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Figure 8. Environment simulated using a software tool (the big arrow indicates the initial square).

Figure 9. The lattice modeled by the mapping automaton (the big arrow indicates the final state).


