
A.R. Camolesi

Departamento de Engenharia de Computação e Sistemas Digitais, Universidade de São Paulo, Brasil
Coordenadoria de Informática, Fundação Educacional do Município de Assis, Brasil

E-mail: camolesi@femanet.com.br

Abstract
This paper aims to present the logical model that makes up
the structure of a tool for the definition of environments for
rule-driven adaptive formalisms.

1 Introduction
Adaptive applications need resources to adapt
themselves to the environment’s momentary needs and
to foresee the internal and external demands, thus
making up for a complex, robust, and fault-tolerant
structure, yet flexible and responsive. Such applications
offer modern capacities that are very difficult to be
modeled by using present techniques of software
development.
In order to solve the adaptive applications’ modeling, it
was proposed in [1] a generic formalism that allows
(underlying) rule-driven non-adaptive devices to be
extended to concepts of adaptive mechanisms. Such
formalism is based on an Adaptive Mechanism (AM)
that involves the kernel of an underlying non-adaptive
device (ND). This way, an Adaptive Device (AD) is
formally defined by AD = (C, AR, S, c0, A, NA, BA,
AA).
In this formulation C is the set of all the possible
configurations of ND and c0 ∈ C means its initial
configuration. S is the set of all possible events that
make up AD’s entry chain and set A represents the
acceptance configurations for ND.
Sets BA and AA are adaptive actions’ sets. NA is a set
of all symbols that can be generated with exits by AD,
in response to the application of adaptive rules.
AR is the set of adaptive rules that define the adaptive
behavior of AD and is given by the relationship Ar ⊆
BA×C×S×C×NA×AA in which adaptive actions
modify the current set of AR adaptive rules from AD to
a new AR set by adding and/or deleting adaptive rules
in AR.
Based on these definitions, it is proposed in this paper a
logical model for the representation of the formal

elements shown in [1]. Such model is fundamental to
the developing of tools that support a design
methodology for adaptive applications. This paper is
organized as follows: in section 2, the stages of
extensions for adaptive devices and its use will be
described. In section 3, the logical representation for
adaptive devices is shown, and finally, in section 4,
some conclusions and future papers are discussed.

2 Stages of extensions for non adaptive
rule-driven devices.

When extending a formalism of an underlying device to
the concepts of adaptive rule-driven mechanisms, a
specialist should involve the non adaptive device with
an adaptive layer. In order to develop this job, the
specialist should possess good knowledge both of the
underlying formalism and of the concepts of adaptive
mechanisms. On the other hand, a planner that uses a
device extended by a specialist does not need a formal
knowledge as deep as the one needed by the specialist
in extension of devices. The planner needs to know the
extended specification language and how to use it in the
project of his applications.
When extending a non adaptive rule-driven device to
support adaptive characteristics there is the need to
accomplish 3 stages: the stage of extension of the
formal (mathematical) model, the stage of definition of
the logical model and the stage of definition of the
physical model. Figure 1 illustrates the stages and the
existent relationship among them.
The stage of extension of the formal model Figure 1(A),
offers a view in which a specialist with good
mathematical knowledge of underlying formalism
accomplishes the conceptual definition of the extended
device to the concepts of adaptive mechanisms. In [1]
and [2], extensions of underlying devices are presented
to the concepts of adaptive devices. In this phase, the
junction of the formal concepts of both (underlying and
adaptive) formalisms is achieved, thus obtaining a new
underlying device extended to concepts of adaptive
mechanisms.

Modeling a tool for the generation of programming environments for
adaptive formalisms

Figure 1. Stages of extension of non adaptive rule-driven devices.
After obtaining the adaptive formalism, it is necessary a
mapping of its concepts for an intermediate
representation, as shown in Figure 1(B). Such stage
consists of the definition of the logical structure that
represents the formal concepts of the new adaptive
device. Such structure is of fundamental importance,
because it is part of the information storage structure
necessary for the development of tools that will help the
planner in designing adaptive applications.
In the stage of physical definition, as shown in Figure
1(C), a planner with knowledge of the developed
adaptive formalism accomplishes the specification of
his application. At this stage, yielded specifications are
to be later analyzed and implemented.
When performing his work the planner instances the
defined objects in the logical stage and he defines the
physical elements that represent the behavior of the
application.
In this phase, it can be observed that the instantiated
objects belong to two different classes, i.e., the objects
that represent the behavior of the developed application
and other objects that represent the adaptive functions
and actions responsible for modifications in the
behavior of the application in execution. Based on the
set of the defined objects in this phase, the presentation,
the simulation, the verification and the execution of the
projected application are allowed. During the
simulation and execution process of specification in the
adaptive kernel, adaptive actions can be executed and
rules can be added or removed from the behavior

represented by specification, thus modifying its
structure.
In [3], a methodology was proposed to give support to
the project of adaptive applications by using concepts
presented in this paper. In Figure 2, it is shown the
design methodology for adaptive applications formed
by the following phases: specification phase,
transformation specification phase, and validation and
specification simulation phase. In the specification
phase the application is accomplished by using either a
text or a graphic tool. Soon afterwards, the
transformation of the produced specification to an
intermediate representation (logical model) is
accomplished and, based on the obtained representation
the planner can inform entry string sequences and
evaluate its specification. If mistakes or inconsistencies
occur, the planner can make changes in the
specification and restart the process.

Figure 2. Methodology of Design of Adaptive Applications.
The proposed methodology is linked to the need to use
tools for helping the planner in the performance of his
job. During the specification phase there is the need of
a text or graphic tool to aid the planner in the
specification of an application. The phase of
specification transformation of the application to an
intermediate representation can be accomplished in two
ways: automatic (generated by the editors at the
moment of the edition), or through a translator that
makes the transformation process after the specification
process. And, finally, tools that allow the visualization,
simulation and verification of the projected
applications. In this phase, the planner, using an
integrated environment informs the values regarding
entry chain and submits their specification to the
performer of the adaptive kernel. Initially, in case they
exist, prior adaptive actions are performed, followed by
elementary actions of the underlying device and finally
the subsequent adaptive actions. This way, at each step
the designer gets a new configuration (state of the
system) and a new set of rules (behavior of the
application) according to the adaptive actions that were

performed. The obtained results should be displayed to
the user, who can analyze them and, if necessary, make
changes and restart the whole process.

3 Logical model for adaptive formalisms
Based on the concepts shown in [1], a logical model is
proposed, so that it allows the construction of tools that
help to plan adaptive applications. Such a model is
represented by a data structure that gives support to the
storage of the intermediate representation and allows
the construction of a program that can manage the
performance of the resulting specification by using the
available facilities from adaptive devices.
In [3], a proposal was presented for the logical
structuring of the formal definition of the concepts of
adaptive devices. Figure 3 shows a diagram of entity
relationship of the conceptual model for adaptive
devices. Such a diagram is structured by objects of
three types: Underlying Kernel (UK), Specification (S)
and Adaptive Layer (AL) according to the
characteristics they represent.
The objects of horizontal hachure (Device, Component
Type, Connection Type and Attribute Type) are
Underlying Kernel (UK) type and they correspond to
the intermediate representation of the basic elements of
an underlying device. In this structure, the conceptual
elements of the underlying devices formally represented
by set C are defined.

Figure 3. Diagram of entity relationship intermediate

representation.
Solid color objects (Project, Attributes, Components,
Connections and Variables Environment) are
Specification (S) type and aim to represent the
specifications yielded by a planner. Each object of this
structure corresponds to elements of the formal
definition, in which: each rule c that is part of the set of
rules NR of an underlying device ND can be
represented by the objects in S. The planner, when
defining a specification, instances objects of the NS
type (elements that constitute the underlying kernel)
and defines the behavior of the application. This
structure also stores the elements of set A that
correspond to the rules of acceptance of an adaptive
device and, furthermore, to the information on values of

both the entry and exit chains in the Variable
Environments object.
The objects with vertical hachure are Adaptive Layer
(AL) type and they aim to provide the necessary
resources to support the adaptive layer that involves the
underlying kernel. The Adaptive Layer is structured in
objects that correspond to the configuration of the
adaptive device (Adaptive Action Type), and in objects
that correspond to the AR conceptual elements that, in
turn, correspond to adaptive functions and actions.
When defining the Underlying Kernel of a new device
(Petri Nets, Automata, Grammar Free from Context,
etc...) the specialist needs to store information related to
the name of the device, the creation date and updating,
etc… Such information is stored in the Devices object.
Information on the types of components (places and
transitions of a Petri Net, final states, and non-final
states of Automata, etc...) that represent the behavior of
an application and that is used by a planner when
specifying their application, can be represented by the
Component Type object.
When specifying a rule that represents the behavior of
an application it is necessary to represent the form of
the existing connection between its components. The
Connection Type object represents the information on
the connection type for a device: transition for
Automata, Petri Net connections, etc…, while the
Attribute Type object contains information on the types
of data that are available for attribution to a component
of an application behavior.
When accomplishing the Specification of an application
it is necessary to store information on the description of
the specification, on the planner in charge, etc…. Such
information is represented by the Projects object. At
first, when defining the behavior of a project, one
should define the components that constitute the
application behavior. Such components are parts of the
NR rules and they are represented by the Components
object. One can mention the description of the states
that constitute a specification of Automata or the
description of the places and transitions of a Petri Net,
etc… as examples of such components.
Following the definition of the components, one defines
the rules (set c of the formal representation) that
constitute the behavior of an application (formally acted
by NR). Such structure establishes the relationship
among the defined elements in both Component and
Connection Type objects and defines the behavior of an
application.
The value of each attribute associated to a (Component
or Connection) object is represented by the Attributes
object. The values of stimulus, and related information
to the exit and other necessary information during

execution are acted by the Environment Variables
object.
The Adaptive Layer is associated to the elements of
specification of an application. This results, at first, in
the definition of the information on the type of adaptive
action that can occur: consultation action, insert or
removal. Such information is stored in the Adaptive
Action Type object.
When the adaptive mechanism is joined to the
underlying kernel it is necessary to define the adaptive
functions (the conceptual elements BA and AA) that
should be associated to the elements of the Components
object. The Adaptive Functions object allows the
extension of the underlying kernel to have the features
of adaptive mechanisms and it makes the connection
between the elements of the underlying kernel and their
respective adaptive actions that are represented by the
Adaptive Actions object.
The Adaptive Actions object represents the set of
adaptive actions belonging to AR that has the function
of accomplishing changes in the behavior of the
projected application.
Based on the logical structure, a tool is being developed
that will allow a specialist to configure the conceptual
elements of a non adaptive device and to accomplish its
extension for the adaptive mechanisms. Such tool will
also allow a planner, by using a textual language
(intermediate representation), to develop the project of
their applications.
In a second stage other tools will be developed that will
allow the specification and display of graphic elements
of the extended adaptive devices. The tool development
is being made in Java [3] due to the portability and
reuse features inherent to this programming language.
Figure 3 shows the interface of the tool that is
responsible for the definition of the connections of a
specification.

Figura 4. Interface of an Adaptive Tool System.

4 Conclusion.
This work aimed to present how to make the extension
of a non adaptive device to support the characteristics
of adaptive mechanisms.
Initially, the general structure of an adaptive mechanism
was presented, followed by the stages for the extension
of a non adaptive formalism to support the
characteristics of adaptive mechanisms. Following, the
methodology for the design of adaptive applications
was shown by using these concepts. Finally, a logical
model was presented for the construction of tools that
will give support to a design methodology of adaptive
applications.
The proposed methodology was used in [2] to modeling
of applications that has support the use of graphic
interface and tools are being implemented to facilitate
specialists and planners in their job with adaptive
technology.
In relationship the stages of definition of adaptive
formalisms several works were accomplished in relation
to formal definition and as resulted adaptive formalisms
were developed. Such works served as base for the
definition of the extension stages for adaptive
formalisms and they were to base the proposal of a
logical model that it seeks to represent adaptive rule-
driven formalisms.
The defined logical structure represents the conceptual
elements for adaptive formalisms and it constitutes an
intermediate representation for the definition of tools
that it will support the methodology of design of
adaptive applications.
As a continuation to this work, it is suggested a deeper
study for the validation of the proposed logical model
and the definition of a physical model (computational)
for the validation of the proposed structure.

References
[1] Neto J.J.(2001) Adaptive rule-driven devices -

general formulation and case study, Sixth
International Conference on Implementation and
Application of Automata, Pretoria-South Africa.

[2] Camolesi, A.R. and Neto, J.J. (2004) Modelagem
Adaptativa de Aplicações Complexas, XXX
Conferencia Latino Americana de Informatica
(CLEI), Arequipa, Peru.

[3] Camolesi, A.R. e Neto, J.J (2003) An adaptive
model for modelling of distributed system,
Conference Argentina in la Ciência da
Computacion (CACIC), La Plata, Argentina.

[4] Programming Language JAVA in
http://www.sun.com (September 2004).

