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Abstract 

Ecological niche modelling allows inferring the niche of a species according to the values of environmental variables and 
species presence points in a given geographic area; modelling algorithms proceeds correlating the species data with the raster 
environmental layers in a sampled area until a niche model were identified. An adaptive decision table is a decision table 
able to modify the rules during the execution time. As a proof of concept, we applied the proposed method to the Genetic 
Algorithm for Rule-set Production (GARP), which is one of the most applied modelling algorithms. One of the main 
problems is to identify which algorithm parameters are able to result in a better performance and to generate an adequate 
model for the species geographic distribution. In this case, the adaptive techniques may imply in a better evaluation of the 
context and, in the experiments executed during this research, it was possible to show that the new implementation does not 
affect the performance of the genetic algorithm. This approach may result in a methodology for adoption and software 
implementation of adaptive decision tables in order to solve problems related to the use of genetic algorithms. The 
methodology is presented in this paper. 
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1111    Introduction 
This paper treats of two very strong trends, adaptivity and evolutionary programming, which are put together so as to 
propose an application related to environmental modeling. This approach is suitable for the practice of complex systems 
programming, featuring artificial intelligence capabilities, such as grammatical inference, computer learning and 
autonomous dynamically changeable behavior. This experience is based on the concepts of modelling provided by the 
openModeller framework [http://openmodeller.sourceforge.net/], which infers a probability distribution of a species, in a 
given geographical area, from data about the species occurrence and environmental variables in that area (input data). 

The openModeller framework includes several alternative algorithms to do the inference and, among them, the GARP 
genetic algorithm is the best choice for these kind of experiments, because it is simultaneously one of the most sensitive to 
parameters changes and one of the most applied worldwide [6], [7]. GARP is a genetic algorithm which takes the input 
modelling data and, based on their values, produce a set of rules which allow to infer the presence of the given specie in 
another geographical area according to the values of the considered environmental variables. 

An adaptive decision table is a decision table provided with a set of adaptive functions able to add or remove the rules on 
defining the subjacent decision table. Any genetic algorithm can be executed by an adaptive decision table [1] and, in order 
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to show a concept proof of this claim, the original implementation of the GARP algorithm was substituted by the 
AdapGARP, proposed in this paper, and some experiments were done in order to verify the impacts on the performance of 
the new algorithm related to original GARP. At last, the openModeller framework will be provided with a new version of the 
GARP algorithm, implementing adaptive the operators Crossover and Mutation, of a genetic algorithm definition, so as to 
offer a smart way to define parameters choices. 

2222    Adaptive Devices 
In this work, the adaptive models follow a slightly modified version of the formulation defined in [2].  

Non-adaptive devices are formal devices whose behavior is defined as a static set of rules. This kind of devices may have 
their operation enhanced by adding to them an adaptive layer that associates each device's rule to a set of adaptive actions. 
Adaptive actions specify the changes to be applied to the device's sets of rules by using primitive editing operators, which 
allow applying inspection, deletions and additions to the set of rules, defining the device. In another words, the adaptive 
layer performs all operations that are needed for dynamically modifying the set of rules, defining the operation of the device. 

Such improved devices are called adaptive devices and the original devices from which they are obtained are said to be their 
corresponding subjacent non-adaptive devices. There is no restriction in the nature of subjacent devices, so one may obtain 
adaptive devices from virtually any kind of abstraction defined as set of rules, e.g. automata, grammars, decision tables, etc. 

3333    Mapping Genetic Algorithms into Adaptive Decision Tables  
For the rest of this work, the subjacent abstraction will be the decision table, and the corresponding adaptive device will be 
named as adaptive decision tables.  

A decision table ([1], [3], [4] and [5]) is a table encoding a set of rules in columns. The first column designates a number of 
Condition Rows, on top of the table, and a set of Actions Rows, on the bottom of the table. The set of rules starts at an initial 
configuration, and the decision table operates checking the valid conditions against the values defined in the column rules. 
When a condition is found to be true for a given rule, then all the marked actions for this rule are executed. 

 
  0 1 2 3 4 5 6 7 8 9 

c1           

c2           

…           
Condition rows 

cn           
a1           
a2           
…           

Actions rows 

zm           
Table 1 Decision Table 

 

An adaptive version of this abstraction may be obtained by adding to an existing non adaptive table a number of further lines 
which encode, for each column representing a single rule, the (parametric) calls to adaptive functions associated to the 
execution of that particular rule. Whenever a rule in the table is applied, the associated adaptive functions are invoked, and 
their corresponding collateral effects change the current set of rules, according to the adaptive operators performed by the 
adaptive function. 

The strategy adopted for this work consists of encoding decision-taking rules as rules of an adaptive decision table, and the 
changes in behavior will be modelling as adaptive actions, over the rules encoded in the decision table. In order to be useful, 
the resulting adaptive decision table must replicate the behavior of the original genetic algorithm.  

Once the programming of the mapping law is determined, any genetic algorithm-based program may be converted to an 
equivalent adaptive transition table-driven version. In this work, both version were compared regarding the number of 
iterations as a function of the fitness function precision.  

3.1 Adaptive decision table format and operation 

As we already pointed out, to create an adaptive decision table from a decision table, it is necessary to add some adaptive 
functions to the definition of the decision table. As defined in [2], these adaptive functions are placed in a set of rows under 
the Actions Rows of the decision table. The Table 2 shows the general setup of an adaptive decision table. 
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       D1 D2 ... Dh R1 R2 ... Rh 
  0 1 2 3 4 5 6 7 h+4     

Condition rows c1              
 c2              
 …              
 cn              

Actions a1              
 a2              
 …              
 zm              

Adaptive Functions ba1              
 ba2              
 …              
 baf              

Table 2 Adaptive Decision Table Format 

 

To operate an adaptive decision table, first the status of the system is checked against the combinations of conditions stated 
in each of the rules encoded in the table. If no rule matches the current status, then no action is executed. Otherwise, if a 
single rule matches the current status, then a deterministic choice is identified. So, the matching rule is selected and is 
applied. Finally, if more than one rule matches the current status, then there is a non-deterministic situation and, 
consequently, all those rules need to be applied in parallel. From the practical point of view, the parallelism may be 
simulated, e.g. by some exhaustive backtracking strategy, and this is the reason that implicates in the requirement of the 
performance analysis of the new algorithm. The selected rule is then applied by executing the set of all actions indicated with 
a boolean value True in the cells of the rule corresponding to action rows. Once the selected rule has been applied, the 
decision table is ready to be used again. 

4444    The AdaptGARP Algorithm 
The AdaptGARP algorithm describes an adaptive implementation of the GARP algorithm [6], [7], and its Crossover and 
Mutation operators, considering the version implemented in the openModeller framework. In order to do this, the rule-set 
will describe an individual, at a specific step of the genetic algorithm, in a format suitable for specifying these adaptive 
versions of the classical genetic operators. 

Adaptive Crossover and Adaptive Mutation will act as rules manipulators over other rules stated in this new format, and they 
are invoked by the main algorithm – indeed, the genetic schemata – as subroutines, replacing the non-adaptive versions. 
After describing suitable data structure for use with adaptive genetic operators, Adaptive Crossover and Adaptive Mutation 
are described. For the rest of this work, these operators will be named as AdaptCrossover and AdaptMutation. 

4.1 Data structures 

First of all, data structures must be designed so as to apply the general technique described in [2].  

The Crossover genetic operator takes two individuals and interchanges genetic information between them, at the genetic 
level, producing a new individual; in the rules of the GARP algorithm, this handling of information operates on the limits of 
the intervals, defined within the rules. 

Such technique requires that the rules of the non-adaptive device be encoded as a decision table. Then, it is necessary to 
design suitable adaptive functions for manipulating the rules encoded in the decision table. These adaptive functions are 
encoded as part of the adaptive decision table, which results in a compact representation of the genetic operators, as part of 
the adaptive decision table and representing the dynamic change of the rule-set. 

In order to implement the GARP algorithm’s rules, the format defined in [2] is applied. As an example, consider h interval 
rules, associated to k environmental variables, as depicted in Table 3. 

 
 R1 R2 R3  Rh 

x1 ≥ A11 A21 A31 ... Ah1 

x1 ≤ B11 B21 B31 ... Bh1 

x2 ≥ A12 A22 A32 ... Ah2 
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x2 ≤ B12 B22 B32 ... Bh2 

... ... ... ... ... ... 

xk ≥ A1k A2k A3k ... Ahk 

xk ≤ B1k B2k B3k ... Bhk 

Table 3. Format for GARP chromosomes 

 
Assume that interval rules are presence rules. In GARP, the usual codification of this kind of rule is: 

IF x1 ∈ [A11, B11] AND x2 ∈ [A12, B12] AND … xk ∈ [A1k, B1k] THEN PRESENCE 

The meaning of a rule Rj, where 1 ≤ j ≤ h, is that if each environmental variable xi, where 1 ≤ i ≤ k, then the species is 
present in the associated localization. 

This represents the main data structure for the adaptive genetic operators described in the following subsections. The number 
of columns of the Table 3 will change as a side-effect of AdaptCrossover's operator execution. The AdaptMutation operator 
will operate over some rule (column) in the table, by changing the limits of the intervals. 

Some decisions must be taken on how to handle the rules. Indeed, any rule is referred by its index on the table, e.g. its 
column’s index. Since in the rule-based adaptive device, the number of rules may change, the set of rules to be considered is 
a dynamic array, which maintain the sequential numbering of its columns, avoiding to renumber the columns in the table.  

To specify the adaptive functions, auxiliary functions are applied, that are described below: 

(a) Ux(y) = 


0 ; if x < y; 1

; if ≥ y
    

(b) The rand(n) function, which produces a pseudo random integer number between 1 and n, and the rand(a, b) function, 
which produces a pseudo random integer number between a and b, when a e b are integers, and produces a pseudo 
random float number between a and b, when a and b are float. 

 
4.2 Adaptive Implementation of Crossover Operator 
 
The Crossover genetic operator takes two individuals and interchanges genetic information between them, at the genetic 
level, producing a new individual; in the rules of the GARP algorithm, this handling of information operates on the limits of 
the intervals, defined within the rules. 

The Table 4 specifies the adaptive function AdaptCrossover in the format of the decision tables. 

The cell on the first row of the first column is used to identify the function's name, leaving unused any other cells on that 
row; the second column, from second to fifth rows, are used to specify the parameters of AdapCrossover; the parameters i 
and j are integer numbers representing the indexes of the rules to be crossed; parameters p and q are integer numbers that 
specify the sections of the intervals which are inherited by the new individual, resulting from the crossover between rule i 
and rule j. The remaining rows specifies adaptive conditions, according to adaptive functions. 

The adaptive function adds a new row to the table of the rules, which is expressed by the symbol “+” at the header of the 
third column, encoding one of the three elementary actions that may operate on the rules defining the adaptive device. 
Another elementary action is the “-”, which removes rules. This is also applied in the specification of the adaptive version of 
the Mutation operator, in section 4.3. The AdaptCrossover operator creates a new rule for which all intervals with index less 
than p or greater or equal than q, will inherit from rule Ri, and the intervals with index greater or equal than p and less than q, 
will inherit from the rule Rj. 

 

  + 
 AdaptCrossover  
 I  
 J  
 P  
 Q  
x1≥  Ai1 + (Aj1 – Ai1)(U1(p) - U1(q)) 

x1≤  Bi1 + (Bj1 –  Bi1)(U1(p) - U1(q)) 
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x2≥  Ai2 + (Aj2 – Ai2)(U2(p) - U2(q)) 

x2≤  Bi2 + (Bj2 – Bi2)(U2(p) - U2(q)) 
...  ... 
xk≥  Aik + (Ajk - Aik)(Uk(p) - Uk(q)) 

xk≤  Bik + (Bjk - Bik)(Uk(p) - Uk(q)) 
Table 4 Adaptive Decision Table for AdaptCrossover 

 
The rules can be resumed as: 

xh ≥ 


A ih ; if h < p; Ajh

; if p ≤ h < q; Aih ; if h ≥ q
    

 
and 

 

xh ≤ 


Bih ; if h < p; Bjh

; if  p ≤ h < q; Bih ; if  h ≥ q
    

 
for all 1 ≤ h ≤ k. 

 
4.3 Adaptive Implementation of Mutation Operator 

The Mutation genetic operator takes one individual and modifies its genetic information, at the genetic level, producing a 
mutation of the original individual; in the case of the rules of the GARP algorithm, this operation alters the limits of the 
intervals defined within the rules.Table 5 specifies the adaptive function AdaptMutation as a decision table [2]. The cell in 
the first row of the first column is used to identify the function's name only, leaving unused any other cells in that row; in the 
second column, the rows 2-5 specifies the parameters of AdaptMutation; parameter j is an integer, representing the index 
associated to the rule; parameters k and g are pseudo random integer numbers; k specifies a gene to be changed; g specifies 
whether the k-th gene is to be changed or not; parameters a and b are pseudo random integer numbers, representing new 
limits for the interval chosen to be changed.  

The remaining rows specifies which conditions the rule must follow, as described below: 

xh ≥ 


A jh ; if r < g; a

; if  r = g; Ajh ; if  r > g
    

 
and 

 

xj ≤ 


Bjh ; if r < g; b

; if  r = g; Bjh ; if  r > g
    

 
for all 1 ≤ h ≤ k. 

 
  - + 
 AdaptMutation   
 j   
 r   
 g   
 a   
 b   
x1≥  Aj1 Aj1Ur(g) - (a - Aj1)Ur(g + 1) 

x1≤  Bj1 Bj1Ur(g) - (b - Bj1)Ur(g + 1) 

x2≥  Aj2 Aj2Ur(g) - (a - Aj2)Ur(g + 1) 

x2≤  Bj2 Bj2Ur(g) - (b - Bj2)Ur(g + 1) 
...    
xk≥  Ajk AjkUr(g) - (a - Ajk)Ur(g + 1) 

xk≤  Bjk BjkUr(g) - (b - Bjk)Ur(g + 1) 
Table 5 Adaptive Decision Table for AdaptMutation 
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4.4 Putting all together: AdaptGARP 

The Table 6 shows the general setup to encode the GARP genetic algorithm in a corresponding adaptive decision table.  

The second column of the first five rows labeled as “Condition rows”, defines the conditions controlling the operation of the 
adaptive decision table. To the column marked as 0 corresponds the first three rows marked as “Actions”, and both are used 
to set up initial values to the adaptive decision table operation. The columns marked as 1 and 2 controls the operation of the 
adaptive decision table, corresponding to the four Action rows. The columns marked as 3F and 4F indicates halt conditions 
for the operation of the adaptive decision table. Also, last seven condition rows encode, in the columns beyond column 5, the 
sample data available (columns marked as D1, D2, D3, … , Dh) and reserve room for the rules the Adaptive Decision will 
produce (columns marked as R1, R2, R3, … , Rh). 

As each rule must specify one interval for each of the environmental variables, there are 2k rows for each rule to be 
produced; this way, the pair Aij,, Bij represents the extreme values of the interval for the i-th environmental variable of the 
rule Rj, where h+4 ≤ i ≤ h+4+n and  1 ≤ j ≤ k. 

As the available data sample has only punctual data, we required that Aij ,= Bij when 5 ≤ i ≤ h+4 and  1 ≤ j ≤ k. 

5555    Experiments  
Fourteen experiments were performed, evolving two species and data sets, for the both algorithms, GARP and AdaptGARP.  

The data applied for the experiments were the test set of the openModeller system referent to the species Furcata boliviana 
and another data set of a species under study by the biological researchers of the project, named as Species B, were applied.  

- Furcata boliviana: data set containing 66 presence points with coordinates of longitude, latitude and altitude. 

-  Ouratea spectabilis: data set contains 34 presence points with coordinates of longitude and latitude. 

In order to define performance metrics, the growth of the number of iterations as a function of the required precision of the 
fitness function, were applied. In fact, the fitness function is based on a-priory probability calculated over the presence points 
– usually, half the sample – used to generate the model compared with the posteriori probability calculated, taking into 
account all the available data in the sample. 

 

 

 

 

 



   AdaptCrossover    AdaptMutation        D1 D2 D3 ... Dh       

   specification    specification  0 1 2 3F 4F  5 6 7 ... h+4  R1 R2 R3 .. Rn 

Condition 
rows iterations == 0 H +  H - +  - T - - -             

 fitness < 75%        - - T - -             

 iterations < 
IterMax        - - T - -             

 fitness ≥ 75        - - - T -             

 iterations ≥ 
IterMax 

       - - - - T             

 x1≥  A i1 + (Aj1 – Ai1)(U1(p) - U1(q))   A j1 A j1Ur(g) - (a - Aj1)Ur(g + 1)        A11 A21 A31 ... A h1       

 x1≤  Bi1 + (Bj1 –  Bi1)(U1(p) – U1(q))   Bj1 Bj1Ur(g) - (b - Bj1)Ur(g + 1)        B11 B21 B31 ... Bh1       

 x2≥  A i2 + (Aj2 – Ai2)(U2(p) – U2(q))   A j2 A j2Ur(g) - (a - Aj2)Ur(g + 1)        A12 A22 A32 ... A h2       

 x2≤  Bi2 + (Bj2 – Bi2)(U2(p) – U2(q))   Bj2 Bj2Ur(g) - (b - Bj2)Ur(g + 1)        B12 B22 B32 ... Bh2       

 ...  ...            ... ... ... ... ...       

 xk≥  A ik + (Ajk  - Aik)(Uk(p) - Uk(q))   A jk A jk Ur(g) - (a - Ajk )Ur(g + 1)        A1k A2k A3k ... Ahk       

 xk≤  Bik + (Bjk  - Bik)(Uk(p) - Uk(q))   Bjk Bjk Ur(g) - (b - Bjk )Ur(g + 1)        B1k B2k B3k ... Bhk       

Actions IterMax = 400        T                 

 iterations = 0        T                 

 n = PopSize        T                 

 Colonize         T T               

 iterations++         T T               

 Selection         T T               

 Evaluate         T T               

Adaptive 
Functions AdaptCrossover A         T               

 AdaptMutation    A      T               

Parameters i P         i0               

 j P   P      i0               

 p P         p0               

 q P         r0               

 r    P      r0               

 g    P      g0               

 a    P      a0               

 b    P      b0               

 
Table 6 AdaptGARP 



The fourteen experiments with each data sample showed no relevant changes in the performance. For the Furcata 
boliviana only, the results obtained were in a different value of iterations for a required precision of 0.007%, as showed 
in Table 7. 

 

 Fitness precision % GARP AdaptGARP 
0.050 22 22 
0.040 27 27 
0.030 35 35 
0.020 52 52 
0.010 102 102 
0.009 113 113 
0.008 127 127 
0.007 144 145 
0.006 168 168 
0.005 200 200 
0.004 252 252 
0.003 335 335 
0.002 502 502 
0.001 1002 1002 

Table 7 Comparison of results for Furcata boliviana 

6666    Conclusions 
This paper described how to implement genetic algorithms using adaptive decision tables and, as a proof of concept, the 
AdaptGARP was designed, as an alternative to the GARP genetic algorithm. In order to compare the performance of the 
proposed implementation, several experiments were executed, comparing both algorithms performances, using the same 
two data samples and parameters, and only a minimal lost of performance were observed, leading to the conclusion that 
the method is practicable. Future works includes made this implementation available for the biological researchers, in 
order to have its relevance evaluated by the community.  
This work is result of the collaboration of the Adaptive Technologies Laboratory with the openModeller project. When 
this collaboration begins our aims was assure that Adaptive Devices can be used to obtain results compatibles on 
performance with those obtained using genetic algorithms. In this work we prove this claim and gain knowledge about 
the internals details of the GARP algorithm implementation, in particular, and about the openModeller system in 
general. Now we are ready to explore the design of new algorithms to contribute to the openModeller project. 
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