
 

Abstract—      Throughout the last decades, many reconfigurable 
operating systems have been developed in order to let users and 
programmers make decisions upon the configuration of some of 
the innermost kernel’s aspects. These decisions, however, require 
an advanced level of skill in order to obtain some performance 
advantage. Furthermore, they can be detrimental to the system’s 
performance if they are not careful taken.  Letting the kernel itself 
do the decision-making upon the implementation of its aspects is a 
safe and powerful way to manage re-configurability that does not 
require interaction with the user nor the need of advanced skills to 
take advantage of. In this article, we propose the usage of Extended 
Adaptive Decision Tables as a mean for the kernel to achieve the 
capability of taking intelligent decisions based solely on the users’ 
process creation behavior.  
  

Keywords— Decision Tables, Operating Systems, Adaptive 
Device 

I.  INTRODUCTION 

he operating systems have been developed and used for 
decades to abstract the complexity of the underlying 

hardware for both end-users, and application programmers. 
Through them, the computer and its components can be seen 
as administrable resources that users and their applications can 
request and use. The list of resources that are administrated by 
the system kernel includes, but is not limited to: processor 
usage, memory distribution, permission for input/output 
operations on actual or virtual devices, among others. 

The first operating systems, such as MS-DOS, only allowed 
the execution of a single process at a time. For that reason, its 
kernel’s only functions were limited to booting, providing a 
command line, and some simple services. The executing 
process would take the complete control over the processor, 
the memory, and the I/O devices, and the system kernel had no 
administrative responsibilities whatsoever.  

With the development of the more advanced UNIX-based 
operating systems that allowed the execution of more than one 
process at a time, and the logging of multiple users 
concurrently, new challenges arose. The issue of which 
processes or users should have more processor usage time, or 
greater free memory chunks available, was addressed 
differently among the different kernel developers. Now, the 
diversity of resource administration policies among different 
operating systems provides users and companies a range of 
problem-specific products to serve their own business 
necessities.  
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Most of the now available public operating systems are non 
re-configurable. This means that their resource administration 
policies are built-in and cannot be changed by the users. 

We will use the nomenclature used in our previous work 
[1] in which the processor usage, the memory distribution or 
any other resource management are said to be aspects of the 
operating system. Each one of these aspects can be 
administrated using a policy or mode. An operating system is 
said to be reconfigurable when one or more of its aspects can 
change their mode during runtime without rebooting. 

 Although almost all of the commercial and home 
requirements for an operating system can be satisfied with a 
non-reconfigurable conventional kernel, there is a potential for 
the adaptable capabilities of a reconfigurable kernel. 

Some examples of reconfigurable operating systems, such 
as Kea [2] and Synthetix [3], have shown better results than 
their commercial counterparts on tests driven under diverse 
and changing execution conditions and process behaviors. 
Others, such as SPIN [4], provided an interface for 
extensibility where the programmer himself could develop 
new modes for the kernel’s aspects. 

All of the reconfigurable operating systems available – 
ready to use, source code, or just in academic bibliography – 
depend upon the user/programmer to decide both which 
changes make to the kernel configuration and when to make 
them. In the majority of the cases, this is achieved by 
providing an object-model based kernel-process interface [5] 
that presents the functionality for a certain service, and allows 
the programmer to define which object instance gets to 
execute them. 

In spite of the great flexibility and adaptive potential that 
can be obtained with the interface approach, its limitations can 
be often enough to prevent users, programmers, or even kernel 
designers, from using it.  

At first, it takes an application programmer to know at least 
something about the kernel’s intricacies in order to obtain any 
advantage. Some programmers may even have to investigate 
about them before knowing where and what to change. 

On the other hand, legacy, standard, or reused programs 
wouldn’t have the opportunity to harness its benefits. They 
might have to be re-engineered before being able to use the 
interfaces properly. End-users with programs of their own 
wouldn’t stand a chance on harvesting the potential of the 
underlying re-configurability.  

In this article, we present a different viewpoint for kernel 
reconfiguration. Since letting the users have the decision-
taking responsibility offers great potential for performance 
improvement, but lacks the portability and demands high 
skills, we thought that the kernel itself may be able to take 
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charge of the issue. The three main arguments supporting this 
idea are: 

First, the kernel developers already have all the skills and 
knowledge about its aspects and modes’ inner complexities. 
They can design better and faster mechanisms for mode 
exchanging so no skills or specific knowledge should be 
demanded to their users and programmers whatsoever. 

Second, all the applications to be run can be kernel-
agnostic and still harness the benefits of reconfiguration. 

Lastly, the kernel can take decisions upon several more 
indicators than a programmer could. Some of them may be 
inaccessible for a process at runtime, and some other may be 
too complex or too kernel-specific for a programmer to take 
into account. 

We will use Extended Adaptive Decision Tables – from 
now on, abbreviated as EADTs – as the device that will allow 
us, as designers, give the kernel the mechanism for decision 
making based on the behavior of its users. 

All the analysis and examples presented in this article were 
conducted on SODIUM1, a project for an academic 
reconfigurable operating system [6] [7] and, more specifically, 
its reconfigurable process scheduler aspect. 
The rest of this article is organized as follows: Section 2 
introduces the reconfigurable kernel design methodology used 
to analyze each aspect. Section 3 introduces the SODIUM’s 
reconfigurable process administration aspect in more detail. In 
section 4, that aspect will be analyzed in order to obtain the 
decision taking criteria necessary for the construction of the 
initial decision table that will be presented in Section 5. In 
section 6 explain what adaptive elements were used in order to 
obtain the adaptive decision table. In section 7, we analyze the 
extended mechanism that allows for multi-criteria decision 
taking in order to generate the final extended adaptive decision 
table. Finally, section 8 discusses the future work and tests to 
be conducted, and the conclusions of this investigation. 

II.  RECONFIGURABLE DESIGN METHODOLOGY 

The SODIUM project was started back in 2005 with the aim to 
give the operating system class’ alumni the opportunity, not 
only to grasp the theory concepts, but also to let them 
involucrate actively in the development of a kernel. At the end 
of each year, all the practices were tested, and the best ones 
were integrated into the kernel for the next year’s alumni to 
use.   

One of the first dilemmas of this methodology emerged 
when, predictably, many different modes were programmed 
for the same particular aspect. For example, having a basic 
fixed partition memory administrator as a base, a practice 
asked to develop another one based on paging, forced the 
student to replace the existing one. This forcibly implicated a 
loss in didactic value since, even though the paging approach 
was, in overall, better, the former mode was still useful for 
teaching purposes. 

Given this situation, the professorship agreed on 
implementing a mechanism by which SODIUM could handle 
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multiple modes for any aspect, and that those modes could be 
exchanged while still on runtime. The efforts on developing a 
design pattern for this mechanism ended up in the 
methodology proposed in [1].  

In that methodology, four steps had to be conducted upon 
each aspect to be designed for re-configurability:  

 
1. The current situation must be analyzed for each 

possible transition between modes – if any –, the 
kernel mechanism that should be developed, and the 
timing level. 

2. All the currently available modes should be 
enumerated along with a graph showing new ones, in 
order to uncover possible missing transitions. 

3. Design the reconfigurable aspect indicating 
implementation details, timing levels, and element to 
be verified for possible data loss for each transition. 

4. Design, document, and publish the kernel/user 
interfaces for the reconfiguration mechanism. 

 
Although this methodology is useful to design 

reconfigurable schemes for existing aspects and modes, it does 
not contemplate the decision-taking process. In fact, it ends at 
step 4, where it indicates that a kernel/user interface should be 
designed. In our proposal, we seek to vary this methodology to 
let the kernel reconfigure itself. In order to do so, we shall 
replace the former step with a new one: 

 
4. Establish the criteria and events determining the need 

for mode changes, and the mechanisms to allow 
them.   

 
The timing levels are also important because they indicate 

which conditions within the system determine whether a 
transition can be executed or not. Four timing levels are 
defined. Level 1, when the transition can be only be executed 
by recompiling the kernel; level 2, when the transition can 
only be executed by rebooting the system; level 3, when the 
transition can be executed in runtime, but globally for all 
processes; and level 4, when the transition can be executed in 
runtime, and in particular for each process.  

In the next section, we will use the presented methodology 
in order to analyze one of the main reconfigurable aspects of 
SODIUM’s kernel. 

III.  SODIUM’ S RECONFIGURABLE PROCESS SCHEDULER 

Even though this article presents a general proposal for kernel 
decision-taking on re-configurability using EADTs, it is 
necessary and much easier to explain its implementation steps 
by using an existing reconfigurable aspect as base. 
 No other reconfigurable aspect has been more refined and 
researched upon in SODIUM than the process scheduler. It 
counts with 6 different modes available: Round-Robin (RR), 
Round-Robin with Priority Queues (RRPR), Round-Robin 
with Variable Quantum (RRQV), First-Come-First-Serve 
(FCFS), Shortest-Finishing-Job-First (SJFS), and Best-Time-
Of-Service (BTS). Many of these modes specification are 



 

standards and can be found in specialized operating system’s 
books. We used a general specification found in [8] as a base 
for almost all of them.  

This aspect has the particularity that all of its 6 modes can 
transition to all of the others without any limitation. This 
means that it counts with 30 different transitions to evaluate. 
Also, the timing level for all transitions is 3. This is because 
any changes in the process scheduler will forcibly affect all the 
process at the same time. No changes can be made 
individually for any process. 

Since straightforwardly programming 30 different 
functions –one for each transition– could result in a bloated 
and difficult to understand kernel code, we decided to analyze, 
at depth, which actions were to be shared between the 
different transitions’ procedures. We identified 8 common 
actions that could be normalized and reutilized between all the 
procedures. Briefly, these actions are: setbasealg(alg), to set 
the basic scheduling algorithm; initPriorities(), to  initialize 
priorities for RRPR; initQTime() to initialize quantum times 
for RRQV; setNonPreemptive() and setPreemptive() to set a 
preemptive or non-preemptive scheduler behavior, 
respectively; queueMode(mode) to set a unique or level based 
ready process queue; and quantumMode(mode), to set a 
unique or priority based quantum evaluation. In Table 3.1, 
different groups of actions are set and identified with an 
alphabet letter codification. 

   
 These groups of actions represent functions that allow the 
execution of all the analyzed transitions. The map of actions 
per transition can be seen in Table 3.2. The ‘0’  action means 
that no procedure should be executed. 

In Table 3.2, the SODIUM kernel can query which actions 
to execute – all of them are commutative – in order to change 
the scheduling mode to another while still on runtime. This is 
a key step for an autonomously reconfigurable kernel, and 
must be designed by the systems developers. This table will be 
used later again in Section 7, when new rules of transition will 
have to be created to contemplate new executing conditions. 

One of the visible limitations of this approach is that it is 
not extensible. All the transactions and groups of actions must 
be determined before the programming of the kernel. Any 
mechanism that would allow a programmer to enable new 

modes would be so complex that it would go against its main 
benefits.  
 

  

 
 

 Although this transition-actions relation allow the kernel to 
execute transitions by itself, it is still not enough to let it take 
decisions. Having this relation between transitions and actions 
to be performed is the first step in order to generate a 
conventional decision table –from now on, abbreviated as 
cTD–.  The cTD will hold the first trivial condition-action 
mechanism that will indicate the kernel when and what 
transitions execute. 
 
 
 

IV.  DECISION-TAKING CRITERIA 

In order to let a transition-mode-actions table, as the one 
obtained before, allow the kernel to have decision-taking 
capabilities, we need to define two new key elements: 
conditions, which will indicate which rules –as a 
generalization of what a transition is, in the context of this 
article– must execute in a given moment; and events, that 
indicate when the conditions must be evaluated.   

Events by themselves can be also considered as conditions, 
for if they do not trigger, no rules associated to them will be 
executed. However, from an operating system’s view, the 
distinction is important. Events are codified as trigger 
functions set in different parts of the kernel while conditions 
are a part of the cTD to be developed. In the case of our 

Actions 

setbasealg(BTS)     x     x     x     x        
setbasealg(RR)                       x x x x x 
initPriorities() x x               x x      x x   
initQTime()  x     x           x       x   

initReorder(CTIME)   x     x     x         x    x  
initReorder(PTIME)    x     x     x     x        x 
setNonPreemptive()   x x     x x   x x            x x 

setPreemptive()                x x x  x x       
queueMode(UN)      x x x x x                  
queueMode(PR) x           x     x       x    

quantumMode(UN)           x x x x x             
quantumMode(PR)  x     x           x       x   

Codification  a b c d e f g h i j k l m n ñ o p q r s t u v w x y z 

 Next Mode 
RR PR QV FC SJ BT 

C
ur

re
nt

 
M

od
e 

RR 0 a b c d e 
PR f 0 g h i j 
QV k l 0 m n ñ 
FC o p q 0 r s 
SJ t p q u 0 s 
BT v w x y z 0 

Table 3.2 – Mode transitions and their set of actions  

Table 3.1 – Set of actions and their codification for mode transitions on SODUIUM’s process scheduler 



 

process scheduler, event triggers will be set every time a 
process is created, killed, interrupted, or released. This 
includes hardware/software interruptions, syscalls, I/O 
requests and responses, and process intercommunication 
routines. 

Defining conditions as such will be a little more difficult. In 
order to define in which executing scenarios we will have to 
evaluate three different edges of the process scheduling: 
scheduling metrics, application categories, and algorithm-
metrics relations. 

 

A.  Scheduling metrics 

 
SODIUM’s process scheduler counts with a set of 7 metrics 

to evaluate and report the performance of each scheduling 
algorithm. Most of them are based on the metrics list present 
in [8]. Here is a brief enumeration and explanation for each 
one: 

 

- Processor Usage ( cpu% ) indicates the ratio between the 

time the processor spends actually executing processes 
and the time that it spends idle or in overhead costly 
procedures.  

-  Throughput ( f# ) indicates the amount of processes 

finished given a finite differential of time. SODIUM 
updates this metric every 10 minutes. 

- Turnaround Time (cvt ) indicates the time that took a 

process to completely executes, from when it is created 
until it is terminated. It includes the time spent waiting 
for enough free memory, to be executed, and I/O 
operations. 

- Waiting Time  ( wt ) indicates the total waiting time of a 

process during all its execution from the moment it is 
created. I/O operations or syscalls are not included in 
this metric since they represent actual requested 
operations from the process. 

- Response Time (rt ) indicates the average time, for each 

process, after which, the first response, such as writing 
a character on the screen, is produced after a user 
request. 

- Effective Time of Service (st ) indicates the sum of time 

that the process has spent in actual usage of the 
processor. 

- Overhead (Ov) indicates the time that the processor 
spends executing system maintenance or managing 
routines. 

 

B.  Application Categories 

 
Since it is not possible to know completely what actions 

and services will an application request before it is completely 
executed, the only way to estimate its future behavior is to 

profile it into well-known categories. We focused that 
profiling using a technique presented in [9] based on 
frequencies of system calls, and maintaining a per-process 
profiling information structure such as the ones specified for 
the Solaris operating system in [10]. 

Executing processes fall, after a short period of profiling, 
into one of the following application categories defined by us: 
Interaction Intensive Applications (II), such as games or 
command-line consoles; Multimedia Applications (M), such 
as video and audio editing tools; I/O Intensive Applications 
(ES), such as DVD burners or data transfer programs; Internet 
Applications (WEB), such as web browsers or network 
programs; Processing Intensive Applications (P), such as 
compilers or scientific programs; and System Applications 
(S), such as services or maintenance programs. 

After conducting several tests on sample programs that 
were successfully profiled, we could establish which metrics 
are more important for each application category. In the Table 
4.1 we show the most important metrics for each category that 
resulted from the tests. 

 

 
 
For simplicity reasons, all the other metrics that are not 

considered as high priority will be considered as indifferent 
for that given category. 

 

C.  Algorithm-Metrics Relations 

 
Since we now count with the possibility of profiling a 

process into a category, keep scheduling metrics up to date, 
and know which metrics favor each category, we only need to 
determine which scheduling algorithms (modes) improve 
those metrics. 

We found some of these algorithm-metric relations already 
documented [8] in the bibliography. However, we conducted 
additional tests to confirm them, and also figure out those that 
were lacking. From these tests, we obtained the results shown 
in the Table 4.2. In this table, the beneficial relations in which 
the algorithm improves the measures from each metric are 

Categories Metrics 
Interaction Intensive 

Applications 
(II) 

Response Time 
Waiting Time 

Multimedia Applications 
(M) 

Waiting Time 
Processor Usage 

I/O Intensive Applications 
(ES) 

Throughput 
Response Time 

Internet Applications 
(WEB) 

Effective Time of Service  
Response Time 

Processing Intensive 
Applications 

(P) 

Turnaround Time 
Throughput 

System Applications 
(S) 

Overhead 

   Table 4.1 – High priority metrics for each category  



 

marked with a (+); the neutral relations in which the algorithm 
doesn’t affect the metric are marked with a (0); the negative 
relations are marked with a (-), and the (x) marks indicate that 
the algorithm is extremely negative to the metric.  

  
 
 

 Metric 

Algorithm %cpu #f tcv tw tr ts ov 

RR + 0 - 0 0 0 0 

RRPR + 0 0 + 0 x 0 

RRQV 0 0 0 0 + x 0 

FCFS - 0 + x x x + 

SJFS -  + + x x x - 

BTS -  0 - - 0 + - 

 
 

We can now combine Tables 4.1 and 4.2 in order to obtain 
an algorithm-category rating in which the score will indicate 
how much each algorithm benefits/handicaps each application 
category. The amount of (+) marks per each high priority 
metric that the algorithm beneficiates will score 1 positive 
point for that category; (-) will rest 1 point; (0) will produce 
no effect; and (x) marks will completely disqualify the 
algorithm. The results from the combination are presented in 
the Table 4.3. 

 

 Algorithm 

Category RR RRPR RRQV FCFS SJFS BTS 

 (II) 0 1 1 X X 0 
 (M) 1 2 0 X X 0 
 (ES) 0 0 1 X X 0 

 (WEB) 0 X X X X 1 
 (P) -1 0 0 1 2 -1 

 (S) 0 0 0 1 -1 -1 

 

V.  CONVENTIONAL DECISION TABLE 

The rating information obtained in the Table 4.3 is enough to 
decide which scheduling algorithm to use when the processes 
in execution pertain to the same application category. 
However, this scenario doesn’t cover all the execution 
possibilities. 
  It could happen that only one process is in the ready queue. 
This case may be important for batch processing systems. 
Using a overhead costly algorithm in these cases is not 
convenient. Therefore, we can establish that in case of mono-
processing (mono), the algorithm used will be FCFS. 
 Also, a more common scenario is that when different 
processes of different categories try to execute concurrently. 
In this case, using the rating from Table 4.3 can be misleading, 
because we are using simple heuristic and empiric information 
on complex cases. In fact, there are 720 different 
combinational scenarios of mixed categories. This complexity 
cannot be addressed a priori, by analyzing each case in 
particular. This case of multi-category (multi) will be resolved 
using an adaptive decision table –from now on, abbreviated as 

ADT– to be developed in the next section. 
By now, we can contemplate the general case of multiple 

categories with the most generally acceptable of the 
scheduling algorithms: RR. 

The mono, multi, and the pure categories processes can be 
interpreted as the conditions that, without combining with 
each other, determine the whole universe of possible execution 
scenarios. Also, we know which algorithm to use for each 
condition, we can establish the transitions –and their actions– 
to execute in each case by combining Tables 4.3 and 3.2. 

We now have all the elements to elaborate the first cDT for 
the SODIUM kernel to decide which algorithm use at each 
moment.  It will consist in a set of 30 rules combining 
conditions –current mode and current scenario– and their 
transition actions. The cDT for the SODIUM process 
scheduler is shown as the Table 5.1. 

 

VI.  ADAPTIVE DECISION TABLE 

A.  Normalized Base cDT 

 
The condition evaluation in the cDT of the Table 5.1 obeys to 
that of an inclusive OR. This means that, it takes only one 
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Current 
Scenario 

Mono   x     x     x           x     x  
II  x     x           x     x     x   
 M x           x     x     x     x    
ES  x     x           x     x     x   

 WEB     x     x     x     x     x      
P    x     x     x     x           x 
S   x     x     x           x     x  

Multi      x     x     x     x     x     
Actions func() a b c d e f g h i j k l m n ñ o p q r s t p q u s v w x y z 

Table 4.3 – Rating relation table between algorithms and 
application categories. 

   Table 4.2 – Relations between metrics and algorithms  

Table 5.1 – Conventional Decision Table for SODIUM Process Scheduler 



 

condition to be true in order to execute a given rule. For 
example, rule 2 will execute if a Mono scenario is detected and 
also if it detects an ES scenario. However, the formal 
definition of the cDT, that we must use as a base for 
developing the more complex ADTs in order to contemplate 
all the possible scenarios from the generalized Multi, requires  
the conditions to be evaluated with an AND logic. For this, it 
will be necessary to add duplicated rules that contemplate one 
of the conditions that will be eliminated from the original one. 
Also, we need to eliminate mono scenario corresponding rules 
because they can be directly programmed into the scheduler; 
and those corresponding the multi scenario, because the ADT 
will allow us to contemplate all the particular rules of 
combining categories scenarios. 
 Another modification to the original cDT is the addition of 
the not mark (-) indicating that that condition must be false in 
order to execute that rule. The resulting fixed cDT is shown in 
the Table 6.1 (some of the rules have been bypassed in the 
representation for format purposes). 
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II - x - - x - - - … - - - - - - - 
 M x - - - - - - x … - - - - - - - 
ES - - - - - - - - … - - x x - x - 

 WEB - - - x - - x - … - - - - - - - 
P - - x - - x - - … - - - - - - - 
S - - - - - - - - … x x - - x - x 

func() a b d e g i j l … h m q q u x y 

 
 

B.  Adaptive mechanism 

 
In order to contemplate new rules for complex scenario 
conditions, such as II and M category processes running 

simultaneously, we will have to add adaptive mechanisms to 
our static cDT in order to turn it into a ADT. ADTs formal 
definition [11] [12] requires the specification of a normalized 
base cDT such as the one in Table 6.1, and also the addition of 
adaptive functions to perform rule query, elimination, and 
insertion actions upon it. 
 In this investigation, we used a simple adaptive mechanism 
that consists in the usage of two different adaptive functions. 
One  is used to verify the existence of rules contemplating the 
current execution scenario. The other is used to add a new rule 
in case that no such rules were detected. 
 These adaptive functions called Ad1 and Ad2, execute after 
and before their calling rules, respectively. Ad1 only sets the 
value of the state variable to D (determined) when an existing 
rule can manage the current state of conditions. When no rule 
can handle the current conditions, a new rule (31) is in charge 
to set the state variable to ND (non-determined). This variable 
is set back by the execution of Ad1, in case that a rule was 
found. On the next step, if the state is equal to ND, another 
new rule (32) executes the Ad2 adaptive function. 
 The Ad2 adaptive function is in charge to add 6 new rules. 
These new rules will transition to the current mode from any 
other mode given the current conditions. The result for this is 
that, whenever in the future, when the same conditions repeat, 
they will transition to the mode in which those conditions 
were found initially. The rationale behind this is that, when a 
new set of conditions is found, is probably because only one 
new different category process was created, where there is a 
whole group of processes of an existing category already 
running. By doing this, we try to maintain the benefits of the 
current mode for the existing processes. 
 

 
 
  The implementation of this mechanism onto the 
subjacent cDT in order to generate the first SODIUM process 
scheduler ADT is shown as the Table 6.2. 

  Adaptive Functions Declarations Rules 
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State             …       N  
II    C1 C1 C1 C1 C1 C1 - x - … - - - - -    
 M    C2 C2 C2 C2 C2 C2 x - - … - - - - -    
ES    C3 C3 C3 C3 C3 C3 - - - … x x - x -    

 WEB    C4 C4 C4 C4 C4 C4 - - - … - - - - -    
P    C5 C5 C5 C5 C5 C5 - - x … - - - - -    
S    C6 C6 C6 C6 C6 C6 - - - … - - x - x    

Actions 
func()    $m $m $m $m $m $m 0 a b d … q q u x y    
State=  D            …      N   

Adaptive  
Functions 

Ad1 A   x x x x x x  x x x x x x x x x  x  
Ad2   B                  x  

Table 6.1 – Normalized cDT 

Table 6.2 – Adaptive Decision Table for SODIUM Process Scheduler 



 

 The action to be performed by every new rule is set by the 
$m function that takes the rule’s own starting mode and the 
current mode –as destination mode– as parameters to obtain 
the specific set of actions for that transition. The result of 
executing $m are exactly those found in the Table 3.2.  
 An example of its adaptive functions can be illustrated as 
when a new scenario is detected in which the (M) and the (S) 
conditions are detected simultaneously. Six new rules are 
created to handle those conditions in combination with the six 
possible current modes, and are added to the subjacent cDT. 
The Table 6.3 shows the effect of their execution, highlighting 
the new rules in shaded green.   

  
However basic, this mechanism actually learns from the 

users’ behavior, and will converge into a complete 720 rules 
cDT differently for each user, or each run. On the other hand, 
it shows some limitations on the fact that, once created, the 
new rules can’t be modified, even if the reaching scenario 
should indicate a new transition for that rule. Also, it doesn’t 
provide the ability to contemplate multiple criteria for the 
decision making process.  These problems are addressed by 
using the extensions shown in the following section. 
 

VII.  EXTENDED ADAPTIVE DECISION TABLE 

 
The ADT obtained in the previous section allows the creation 
of new rules that contemplate conditions that were not 
included in the original cDT. However, the only criterion used 
for determining the transition actions was that of maintaining 
the original current mode. This criterion, doesn’t contemplate 
the usage of direct indicators of performance such as the 
metrics, nor a mechanism to alter the already created rules. 
Therefore, it is necessary to extend the definition of our ADT 
in order to include specific functions that could decide which 
mode to utilize based in the relation between the processes 
categories and the maintained metrics. 

 We will recur to the formal definition of the EADT from 
[13] and [14] in which multiple criteria can be defined in order 
to determine an alternative. 
The original formulation consists on a base ADT such as the 
one obtained in the Table 6.2 and the addition of auxiliary 
functions (FM) that execute prior any other action and define 
values for variables that those actions will use. 
 In our case, we want to define the destination mode 
parameter for the function $m using a multi-criteria method. 
The required steps for defining the method consist in three 
modules: 
  

 
 Module I consists in the identification of the different 
criteria –metrics, in our case– and alternatives –modes– for the 
decision problem. Their quantitative relation will define, in 
each case what alternative will be better for each scenario 
taking the metrics as reference.  In our case we define the a C 
set of conditions, and an A set of alternatives as the following: 
 

  

  Criterion Preference 

Category %cpu #f tcv tw tr ts ov 
 (II) 1 1 1 3 3 1 1 
 (M) 3 1 1 3 1 1 1 
 (ES) 1 3 1 1 3 1 1 

 (WEB) 1 1 1 1 3 3 1 
 (P) 1 3 3 1 1 1 1 
 (S) 1 1 1 1 1 1 3 
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State             …       N        
II    C1 C1 C1 C1 C1 C1 - x - … - - - - -    - - - - - - 
 M    C2 C2 C2 C2 C2 C2 x - - … - - - - -    x x x x x x 
ES    C3 C3 C3 C3 C3 C3 - - - … x x - x -    - - - - - - 

 WEB    C4 C4 C4 C4 C4 C4 - - - … - - - - -    - - - - - - 
P    C5 C5 C5 C5 C5 C5 - - x … - - - - -    - - - - - - 
S    C6 C6 C6 C6 C6 C6 - - - … - - x - x    x x x x x x 

func()    $m $m $m $m $m $m 0 a b d … q q u x y    c h m 0 u y 
State=  D            …      N         

Ad1 A   x x x x x x  x x x x x x x x x  x  x x x x x x 
Ad2   B                  x        

Table 7.1 – Criterion preference by category 

Table 6.3 – Example of an ADT creating new rules for a formerly non-contemplated (M) and (S) Scenario 



 

  Module II consists in obtaining a Z matrix of performance 
for each combination of criteria and alternatives. Using the 
Saaty fundamental scale for comparing the relative importance 
of each criterion with each category we could elaborate the 
Table 7.1. 

On the other hand, we define the importance of each 
criterion pair will vary regarding the amount of processes of 
each category that is ready to execute multiplied by the 
criterion preference shown in the Table 7.1. For example, for 
an scenario where 2 (II) category processes, and 1 (S) category 
process are ready, the importance of the tw and tr metrics will 
be equal to 6, and that of the ov will be 3.  

With those values in mind, a criteria pair preference can be 
elaborated for the example as the one shown in the Table 7.2. 

 

 Criterion Preference 

Criteria %cpu #f tcv tw tr ts ov 

%cpu 1 1 1 6 6 1 3 
#f 1 1 1 6 6 1 3 
tcv 1 1 1 6 6 1 3 
tw 1/6 1/6 1/6 1 1 1/6 3 
tr 1/6 1/6 1/6 1 1 1/6 3 
ts 1 1 1 6 6 1 3 
ov 1/3 1/3 1/3 1/3 1/3 1/3 1 

 
 

 
The values of the Table 7.2, obtained for this particular 

example, will vary depending on the current conditions 
scenario and the amount of processes per category. 
Nevertheless, continuing with the example, a normalized final 
Z matrix of performance can be obtained as the one shown in 
the Table 7.3. 

 

 Criterion Preference 

Total 
Preference 

Category %cpu #f tcv tw tr ts ov 

Multiplier x 1 x 1  x 1  x 6 x 6 x 1 x 3 

RR 0,35 0,13 0,05 0,18 0,16 0,23 0,15 0,17 
RRPR 0,35 0,13 0,15 0,54 0,16 0,03 0,15 0,28 
RRQV 0,12 0,13 0,30 0,02 0,02 0,03 0,45 0,25 
FCFS 0,06 0,13 0,30 0,02 0,02 0,03 0,45 0,11 
SJFS 0,06 0,38 0,30 0,02 0,02 0,03 0,05 0,06 
BTS 0,06 0,13 0,05 0,06 0,16 0,68 0,05 0,13 

 
It can be seen on Table 7.3 that, for the example with two 

(II) processes, and one (S) process, results in a better 
preference for the RRPR mode, just above that of the RRQV 
mode. The Z matrix will be regenerated completely based in 
the amount of ready processes per category each time that an 
adaptive function calls to a z_gen() named function. Another 
z_get() named function will be used to obtain the most 
preferred scheduling mode from the current newest Z matrix.  

Module III consists in the development of the functions for 
the insertion of new rules for the non-contemplated scenarios 
in the moment that they are detected. This was already 
achieved in the TDA presented in the Table 6.2. 

 It will only take to add calls to the z_gen() and z_get() 
functions along with a new variable m to hold their obtained 
value. In the Table 7.4 the final form of the EADT for the 
SODIUM process scheduler is shown. 

 

 
Until now only brief tests and simulations for testing the 

EADT performance regarding different simple scenarios has 
been conducted due to the initial complexity of the 
implementation. Their results were satisfactory although yet 
not sufficient to determine its full potential. We estimate that 
in the next few months, new developments will support the 
usage of this powerful tool. 
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Estado             …       N  
II    C1 C1 C1 C1 C1 C1 - x - … - - - - -    
 M    C2 C2 C2 C2 C2 C2 x - - … - - - - -    
ES    C3 C3 C3 C3 C3 C3 - - - … x x - x -    

 WEB    C4 C4 C4 C4 C4 C4 - - - … - - - - -    
P    C5 C5 C5 C5 C5 C5 - - x … - - - - -    
S    C6 C6 C6 C6 C6 C6 - - - … - - x - x    

Extended Adaptive 
Actions 

z_gen()                     x  
z_get()                     m  

Actions 
func()    $m $m $m $m $m $m 0 a b d … q q u x y    
Estado=  D            …      N   

Adaptive Functions Ad1 A   x x x x x x  x x x x x x x x x  x  
Ad2   B                  x  

Variables m   V                  x  

Table 7.3 – Matrix Z of alternatives preference 

Table 7.2 – Relative preferences between criterion pairs 

Table 7.4 – Final form of the EADT for the SODIUM process scheduler 



 

VIII.  CONCLUSIONS AND FURTHER WORK 

With the usage of EADTs we were able to figure out 
alternatives for execution conditions of an aspect of an 
operating system that were too complex or inaccessible to 
figure out a priori. It also provided the kernel with the 
capability of changing the existing rules based on the new 
process usage behavior of each user. While these features may 
be possible to attain otherwise, none of the other existing 
adaptive devices provide such an intuitive mechanism for 
specifying rules and adaptive functions. 
 Although we are still lacking actual results from tests 
conducted on a variety of complex scenarios, the preliminary 
results on simple executions show that the decision tables 
converged into ideal solutions in each case, and that the kernel 
was actually learning from the process scheduler events. This 
actually serves as a demonstration that, so far, it is possible to 
create an automatic adaptive reconfiguration mechanism for a 
kernel without the supervision or explicit interactions with the 
users and their application.  

There is still much potential to be harnessed from the 
EADTs. For example, we are not yet using the measures from 
the different metrics to evaluate each algorithm benefits from 
the actual execution. Doing this would converge and replace 
the initial heuristics on the algorithm-metrics relation tables.  

Regarding SODIUM, there are other aspects of its design 
that are yet to be analyzed and converted into adaptively 
reconfigurable. That work should be done in the following 
months, during which we would still testing the results of the 
adaptive process scheduler. 

Perspectives on the usage of adaptive mechanisms for 
automatic non-interactive reconfiguration are promising. 
These could be applied on any other home or enterprise 
operating systems in the market without the need of re-
engineering their existing applications. An initial cost should 
be paid, nonetheless; mechanisms for automatic 
reconfiguration must be developed and provided as inputs for 
the EADTs, conditions must be analyzed, and events must be 
set. 
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