

Abstract— Throughout the last decades, many reconfigurable
operating systems have been developed in order to let users and
programmers make decisions upon the configuration of some of
the innermost kernel’s aspects. These decisions, however, require
an advanced level of skill in order to obtain some performance
advantage. Furthermore, they can be detrimental to the system’s
performance if they are not careful taken. Letting the kernel itself
do the decision-making upon the implementation of its aspects is a
safe and powerful way to manage re-configurability that does not
require interaction with the user nor the need of advanced skills to
take advantage of. In this article, we propose the usage of Extended
Adaptive Decision Tables as a mean for the kernel to achieve the
capability of taking intelligent decisions based solely on the users’
process creation behavior.

Keywords— Decision Tables, Operating Systems, Adaptive
Device

I. INTRODUCTION

he operating systems have been developed and used for
decades to abstract the complexity of the underlying

hardware for both end-users, and application programmers.
Through them, the computer and its components can be seen
as administrable resources that users and their applications can
request and use. The list of resources that are administrated by
the system kernel includes, but is not limited to: processor
usage, memory distribution, permission for input/output
operations on actual or virtual devices, among others.

The first operating systems, such as MS-DOS, only allowed
the execution of a single process at a time. For that reason, its
kernel’s only functions were limited to booting, providing a
command line, and some simple services. The executing
process would take the complete control over the processor,
the memory, and the I/O devices, and the system kernel had no
administrative responsibilities whatsoever.

With the development of the more advanced UNIX-based
operating systems that allowed the execution of more than one
process at a time, and the logging of multiple users
concurrently, new challenges arose. The issue of which
processes or users should have more processor usage time, or
greater free memory chunks available, was addressed
differently among the different kernel developers. Now, the
diversity of resource administration policies among different
operating systems provides users and companies a range of
problem-specific products to serve their own business
necessities.

 S. M. Martin, G. E. De Luca, N. B. Casas, Departamento de Ingeniería e

Investigaciones Tecnológicas, Universidad Nacional de La Matanza Buenos
Aires, Argentina. {smartin, gdeluca, ncasas}@unlam.edu.ar

Most of the now available public operating systems are non
re-configurable. This means that their resource administration
policies are built-in and cannot be changed by the users.

We will use the nomenclature used in our previous work
[1] in which the processor usage, the memory distribution or
any other resource management are said to be aspects of the
operating system. Each one of these aspects can be
administrated using a policy or mode. An operating system is
said to be reconfigurable when one or more of its aspects can
change their mode during runtime without rebooting.

 Although almost all of the commercial and home
requirements for an operating system can be satisfied with a
non-reconfigurable conventional kernel, there is a potential for
the adaptable capabilities of a reconfigurable kernel.

Some examples of reconfigurable operating systems, such
as Kea [2] and Synthetix [3], have shown better results than
their commercial counterparts on tests driven under diverse
and changing execution conditions and process behaviors.
Others, such as SPIN [4], provided an interface for
extensibility where the programmer himself could develop
new modes for the kernel’s aspects.

All of the reconfigurable operating systems available –
ready to use, source code, or just in academic bibliography –
depend upon the user/programmer to decide both which
changes make to the kernel configuration and when to make
them. In the majority of the cases, this is achieved by
providing an object-model based kernel-process interface [5]
that presents the functionality for a certain service, and allows
the programmer to define which object instance gets to
execute them.

In spite of the great flexibility and adaptive potential that
can be obtained with the interface approach, its limitations can
be often enough to prevent users, programmers, or even kernel
designers, from using it.

At first, it takes an application programmer to know at least
something about the kernel’s intricacies in order to obtain any
advantage. Some programmers may even have to investigate
about them before knowing where and what to change.

On the other hand, legacy, standard, or reused programs
wouldn’t have the opportunity to harness its benefits. They
might have to be re-engineered before being able to use the
interfaces properly. End-users with programs of their own
wouldn’t stand a chance on harvesting the potential of the
underlying re-configurability.

In this article, we present a different viewpoint for kernel
reconfiguration. Since letting the users have the decision-
taking responsibility offers great potential for performance
improvement, but lacks the portability and demands high
skills, we thought that the kernel itself may be able to take

S. M. Martin, G. E. De Luca, and N. B. Casas

Use of Extended Adaptive Decision Tables on
Reconfigurable Operating Systems

T

charge of the issue. The three main arguments supporting this
idea are:

First, the kernel developers already have all the skills and
knowledge about its aspects and modes’ inner complexities.
They can design better and faster mechanisms for mode
exchanging so no skills or specific knowledge should be
demanded to their users and programmers whatsoever.

Second, all the applications to be run can be kernel-
agnostic and still harness the benefits of reconfiguration.

Lastly, the kernel can take decisions upon several more
indicators than a programmer could. Some of them may be
inaccessible for a process at runtime, and some other may be
too complex or too kernel-specific for a programmer to take
into account.

We will use Extended Adaptive Decision Tables – from
now on, abbreviated as EADTs – as the device that will allow
us, as designers, give the kernel the mechanism for decision
making based on the behavior of its users.

All the analysis and examples presented in this article were
conducted on SODIUM1, a project for an academic
reconfigurable operating system [6] [7] and, more specifically,
its reconfigurable process scheduler aspect.
The rest of this article is organized as follows: Section 2
introduces the reconfigurable kernel design methodology used
to analyze each aspect. Section 3 introduces the SODIUM’s
reconfigurable process administration aspect in more detail. In
section 4, that aspect will be analyzed in order to obtain the
decision taking criteria necessary for the construction of the
initial decision table that will be presented in Section 5. In
section 6 explain what adaptive elements were used in order to
obtain the adaptive decision table. In section 7, we analyze the
extended mechanism that allows for multi-criteria decision
taking in order to generate the final extended adaptive decision
table. Finally, section 8 discusses the future work and tests to
be conducted, and the conclusions of this investigation.

II. RECONFIGURABLE DESIGN METHODOLOGY

The SODIUM project was started back in 2005 with the aim to
give the operating system class’ alumni the opportunity, not
only to grasp the theory concepts, but also to let them
involucrate actively in the development of a kernel. At the end
of each year, all the practices were tested, and the best ones
were integrated into the kernel for the next year’s alumni to
use.

One of the first dilemmas of this methodology emerged
when, predictably, many different modes were programmed
for the same particular aspect. For example, having a basic
fixed partition memory administrator as a base, a practice
asked to develop another one based on paging, forced the
student to replace the existing one. This forcibly implicated a
loss in didactic value since, even though the paging approach
was, in overall, better, the former mode was still useful for
teaching purposes.

Given this situation, the professorship agreed on
implementing a mechanism by which SODIUM could handle

1 Sistema Operativo del Departamento de Ingeniería de la Universidad

Nacional de La Matanza. Web: http://www.so-unlam.com.ar/

multiple modes for any aspect, and that those modes could be
exchanged while still on runtime. The efforts on developing a
design pattern for this mechanism ended up in the
methodology proposed in [1].

In that methodology, four steps had to be conducted upon
each aspect to be designed for re-configurability:

1. The current situation must be analyzed for each

possible transition between modes – if any –, the
kernel mechanism that should be developed, and the
timing level.

2. All the currently available modes should be
enumerated along with a graph showing new ones, in
order to uncover possible missing transitions.

3. Design the reconfigurable aspect indicating
implementation details, timing levels, and element to
be verified for possible data loss for each transition.

4. Design, document, and publish the kernel/user
interfaces for the reconfiguration mechanism.

Although this methodology is useful to design

reconfigurable schemes for existing aspects and modes, it does
not contemplate the decision-taking process. In fact, it ends at
step 4, where it indicates that a kernel/user interface should be
designed. In our proposal, we seek to vary this methodology to
let the kernel reconfigure itself. In order to do so, we shall
replace the former step with a new one:

4. Establish the criteria and events determining the need

for mode changes, and the mechanisms to allow
them.

The timing levels are also important because they indicate

which conditions within the system determine whether a
transition can be executed or not. Four timing levels are
defined. Level 1, when the transition can be only be executed
by recompiling the kernel; level 2, when the transition can
only be executed by rebooting the system; level 3, when the
transition can be executed in runtime, but globally for all
processes; and level 4, when the transition can be executed in
runtime, and in particular for each process.

In the next section, we will use the presented methodology
in order to analyze one of the main reconfigurable aspects of
SODIUM’s kernel.

III. SODIUM’ S RECONFIGURABLE PROCESS SCHEDULER

Even though this article presents a general proposal for kernel
decision-taking on re-configurability using EADTs, it is
necessary and much easier to explain its implementation steps
by using an existing reconfigurable aspect as base.
 No other reconfigurable aspect has been more refined and
researched upon in SODIUM than the process scheduler. It
counts with 6 different modes available: Round-Robin (RR),
Round-Robin with Priority Queues (RRPR), Round-Robin
with Variable Quantum (RRQV), First-Come-First-Serve
(FCFS), Shortest-Finishing-Job-First (SJFS), and Best-Time-
Of-Service (BTS). Many of these modes specification are

standards and can be found in specialized operating system’s
books. We used a general specification found in [8] as a base
for almost all of them.

This aspect has the particularity that all of its 6 modes can
transition to all of the others without any limitation. This
means that it counts with 30 different transitions to evaluate.
Also, the timing level for all transitions is 3. This is because
any changes in the process scheduler will forcibly affect all the
process at the same time. No changes can be made
individually for any process.

Since straightforwardly programming 30 different
functions –one for each transition– could result in a bloated
and difficult to understand kernel code, we decided to analyze,
at depth, which actions were to be shared between the
different transitions’ procedures. We identified 8 common
actions that could be normalized and reutilized between all the
procedures. Briefly, these actions are: setbasealg(alg), to set
the basic scheduling algorithm; initPriorities(), to initialize
priorities for RRPR; initQTime() to initialize quantum times
for RRQV; setNonPreemptive() and setPreemptive() to set a
preemptive or non-preemptive scheduler behavior,
respectively; queueMode(mode) to set a unique or level based
ready process queue; and quantumMode(mode), to set a
unique or priority based quantum evaluation. In Table 3.1,
different groups of actions are set and identified with an
alphabet letter codification.

 These groups of actions represent functions that allow the
execution of all the analyzed transitions. The map of actions
per transition can be seen in Table 3.2. The ‘0’ action means
that no procedure should be executed.

In Table 3.2, the SODIUM kernel can query which actions
to execute – all of them are commutative – in order to change
the scheduling mode to another while still on runtime. This is
a key step for an autonomously reconfigurable kernel, and
must be designed by the systems developers. This table will be
used later again in Section 7, when new rules of transition will
have to be created to contemplate new executing conditions.

One of the visible limitations of this approach is that it is
not extensible. All the transactions and groups of actions must
be determined before the programming of the kernel. Any
mechanism that would allow a programmer to enable new

modes would be so complex that it would go against its main
benefits.

 Although this transition-actions relation allow the kernel to
execute transitions by itself, it is still not enough to let it take
decisions. Having this relation between transitions and actions
to be performed is the first step in order to generate a
conventional decision table –from now on, abbreviated as
cTD–. The cTD will hold the first trivial condition-action
mechanism that will indicate the kernel when and what
transitions execute.

IV. DECISION-TAKING CRITERIA

In order to let a transition-mode-actions table, as the one
obtained before, allow the kernel to have decision-taking
capabilities, we need to define two new key elements:
conditions, which will indicate which rules –as a
generalization of what a transition is, in the context of this
article– must execute in a given moment; and events, that
indicate when the conditions must be evaluated.

Events by themselves can be also considered as conditions,
for if they do not trigger, no rules associated to them will be
executed. However, from an operating system’s view, the
distinction is important. Events are codified as trigger
functions set in different parts of the kernel while conditions
are a part of the cTD to be developed. In the case of our

Actions

setbasealg(BTS) x x x x
setbasealg(RR) x x x x x
initPriorities() x x x x x x
initQTime() x x x x

initReorder(CTIME) x x x x x
initReorder(PTIME) x x x x x
setNonPreemptive() x x x x x x x x

setPreemptive() x x x x x
queueMode(UN) x x x x x
queueMode(PR) x x x x

quantumMode(UN) x x x x x
quantumMode(PR) x x x x

Codification a b c d e f g h i j k l m n ñ o p q r s t u v w x y z

 Next Mode
RR PR QV FC SJ BT

C
ur

re
nt

M

od
e

RR 0 a b c d e
PR f 0 g h i j
QV k l 0 m n ñ
FC o p q 0 r s
SJ t p q u 0 s
BT v w x y z 0

Table 3.2 – Mode transitions and their set of actions

Table 3.1 – Set of actions and their codification for mode transitions on SODUIUM’s process scheduler

process scheduler, event triggers will be set every time a
process is created, killed, interrupted, or released. This
includes hardware/software interruptions, syscalls, I/O
requests and responses, and process intercommunication
routines.

Defining conditions as such will be a little more difficult. In
order to define in which executing scenarios we will have to
evaluate three different edges of the process scheduling:
scheduling metrics, application categories, and algorithm-
metrics relations.

A. Scheduling metrics

SODIUM’s process scheduler counts with a set of 7 metrics

to evaluate and report the performance of each scheduling
algorithm. Most of them are based on the metrics list present
in [8]. Here is a brief enumeration and explanation for each
one:

- Processor Usage (cpu%) indicates the ratio between the

time the processor spends actually executing processes
and the time that it spends idle or in overhead costly
procedures.

- Throughput (f#) indicates the amount of processes

finished given a finite differential of time. SODIUM
updates this metric every 10 minutes.

- Turnaround Time (cvt) indicates the time that took a

process to completely executes, from when it is created
until it is terminated. It includes the time spent waiting
for enough free memory, to be executed, and I/O
operations.

- Waiting Time (wt) indicates the total waiting time of a

process during all its execution from the moment it is
created. I/O operations or syscalls are not included in
this metric since they represent actual requested
operations from the process.

- Response Time (rt) indicates the average time, for each

process, after which, the first response, such as writing
a character on the screen, is produced after a user
request.

- Effective Time of Service (st) indicates the sum of time

that the process has spent in actual usage of the
processor.

- Overhead (Ov) indicates the time that the processor
spends executing system maintenance or managing
routines.

B. Application Categories

Since it is not possible to know completely what actions

and services will an application request before it is completely
executed, the only way to estimate its future behavior is to

profile it into well-known categories. We focused that
profiling using a technique presented in [9] based on
frequencies of system calls, and maintaining a per-process
profiling information structure such as the ones specified for
the Solaris operating system in [10].

Executing processes fall, after a short period of profiling,
into one of the following application categories defined by us:
Interaction Intensive Applications (II), such as games or
command-line consoles; Multimedia Applications (M), such
as video and audio editing tools; I/O Intensive Applications
(ES), such as DVD burners or data transfer programs; Internet
Applications (WEB), such as web browsers or network
programs; Processing Intensive Applications (P), such as
compilers or scientific programs; and System Applications
(S), such as services or maintenance programs.

After conducting several tests on sample programs that
were successfully profiled, we could establish which metrics
are more important for each application category. In the Table
4.1 we show the most important metrics for each category that
resulted from the tests.

For simplicity reasons, all the other metrics that are not

considered as high priority will be considered as indifferent
for that given category.

C. Algorithm-Metrics Relations

Since we now count with the possibility of profiling a

process into a category, keep scheduling metrics up to date,
and know which metrics favor each category, we only need to
determine which scheduling algorithms (modes) improve
those metrics.

We found some of these algorithm-metric relations already
documented [8] in the bibliography. However, we conducted
additional tests to confirm them, and also figure out those that
were lacking. From these tests, we obtained the results shown
in the Table 4.2. In this table, the beneficial relations in which
the algorithm improves the measures from each metric are

Categories Metrics
Interaction Intensive

Applications
(II)

Response Time
Waiting Time

Multimedia Applications
(M)

Waiting Time
Processor Usage

I/O Intensive Applications
(ES)

Throughput
Response Time

Internet Applications
(WEB)

Effective Time of Service
Response Time

Processing Intensive
Applications

(P)

Turnaround Time
Throughput

System Applications
(S)

Overhead

 Table 4.1 – High priority metrics for each category

marked with a (+); the neutral relations in which the algorithm
doesn’t affect the metric are marked with a (0); the negative
relations are marked with a (-), and the (x) marks indicate that
the algorithm is extremely negative to the metric.

 Metric

Algorithm %cpu #f tcv tw tr ts ov

RR + 0 - 0 0 0 0

RRPR + 0 0 + 0 x 0

RRQV 0 0 0 0 + x 0

FCFS - 0 + x x x +

SJFS - + + x x x -

BTS - 0 - - 0 + -

We can now combine Tables 4.1 and 4.2 in order to obtain
an algorithm-category rating in which the score will indicate
how much each algorithm benefits/handicaps each application
category. The amount of (+) marks per each high priority
metric that the algorithm beneficiates will score 1 positive
point for that category; (-) will rest 1 point; (0) will produce
no effect; and (x) marks will completely disqualify the
algorithm. The results from the combination are presented in
the Table 4.3.

 Algorithm

Category RR RRPR RRQV FCFS SJFS BTS

 (II) 0 1 1 X X 0
 (M) 1 2 0 X X 0
 (ES) 0 0 1 X X 0

 (WEB) 0 X X X X 1
 (P) -1 0 0 1 2 -1

 (S) 0 0 0 1 -1 -1

V. CONVENTIONAL DECISION TABLE

The rating information obtained in the Table 4.3 is enough to
decide which scheduling algorithm to use when the processes
in execution pertain to the same application category.
However, this scenario doesn’t cover all the execution
possibilities.
 It could happen that only one process is in the ready queue.
This case may be important for batch processing systems.
Using a overhead costly algorithm in these cases is not
convenient. Therefore, we can establish that in case of mono-
processing (mono), the algorithm used will be FCFS.
 Also, a more common scenario is that when different
processes of different categories try to execute concurrently.
In this case, using the rating from Table 4.3 can be misleading,
because we are using simple heuristic and empiric information
on complex cases. In fact, there are 720 different
combinational scenarios of mixed categories. This complexity
cannot be addressed a priori, by analyzing each case in
particular. This case of multi-category (multi) will be resolved
using an adaptive decision table –from now on, abbreviated as

ADT– to be developed in the next section.
By now, we can contemplate the general case of multiple

categories with the most generally acceptable of the
scheduling algorithms: RR.

The mono, multi, and the pure categories processes can be
interpreted as the conditions that, without combining with
each other, determine the whole universe of possible execution
scenarios. Also, we know which algorithm to use for each
condition, we can establish the transitions –and their actions–
to execute in each case by combining Tables 4.3 and 3.2.

We now have all the elements to elaborate the first cDT for
the SODIUM kernel to decide which algorithm use at each
moment. It will consist in a set of 30 rules combining
conditions –current mode and current scenario– and their
transition actions. The cDT for the SODIUM process
scheduler is shown as the Table 5.1.

VI. ADAPTIVE DECISION TABLE

A. Normalized Base cDT

The condition evaluation in the cDT of the Table 5.1 obeys to
that of an inclusive OR. This means that, it takes only one

Rules
 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

C
on

di
tio

ns

Current
Mode

R
R

R
R

R
R

R
R

R
R

P
R

P
R

P
R

P
R

P
R

Q
V

Q
V

Q
V

Q
V

Q
V

F
C

F
C

F
C

F
C

F
C

S
J

S
J

S
J

S
J

S
J

B
T

B
T

B
T

B
T

B
T

Current
Scenario

Mono x x x x x
II x x x x x
 M x x x x x
ES x x x x x

 WEB x x x x x
P x x x x x
S x x x x x

Multi x x x x x
Actions func() a b c d e f g h i j k l m n ñ o p q r s t p q u s v w x y z

Table 4.3 – Rating relation table between algorithms and
application categories.

 Table 4.2 – Relations between metrics and algorithms

Table 5.1 – Conventional Decision Table for SODIUM Process Scheduler

condition to be true in order to execute a given rule. For
example, rule 2 will execute if a Mono scenario is detected and
also if it detects an ES scenario. However, the formal
definition of the cDT, that we must use as a base for
developing the more complex ADTs in order to contemplate
all the possible scenarios from the generalized Multi, requires
the conditions to be evaluated with an AND logic. For this, it
will be necessary to add duplicated rules that contemplate one
of the conditions that will be eliminated from the original one.
Also, we need to eliminate mono scenario corresponding rules
because they can be directly programmed into the scheduler;
and those corresponding the multi scenario, because the ADT
will allow us to contemplate all the particular rules of
combining categories scenarios.
 Another modification to the original cDT is the addition of
the not mark (-) indicating that that condition must be false in
order to execute that rule. The resulting fixed cDT is shown in
the Table 6.1 (some of the rules have been bypassed in the
representation for format purposes).

 1 2 3 4 5 6 7 8 …
2
4

2
5

2
6

2
7

2
8

2
9

3
0

Current
Mode

R
R

R
R

R
R

R
R

P
R

P
R

P
R

Q
V

…
P
R

Q
V

F
C

S
J

S
J

B
T

B
T

II - x - - x - - - … - - - - - - -
 M x - - - - - - x … - - - - - - -
ES - - - - - - - - … - - x x - x -

 WEB - - - x - - x - … - - - - - - -
P - - x - - x - - … - - - - - - -
S - - - - - - - - … x x - - x - x

func() a b d e g i j l … h m q q u x y

B. Adaptive mechanism

In order to contemplate new rules for complex scenario
conditions, such as II and M category processes running

simultaneously, we will have to add adaptive mechanisms to
our static cDT in order to turn it into a ADT. ADTs formal
definition [11] [12] requires the specification of a normalized
base cDT such as the one in Table 6.1, and also the addition of
adaptive functions to perform rule query, elimination, and
insertion actions upon it.
 In this investigation, we used a simple adaptive mechanism
that consists in the usage of two different adaptive functions.
One is used to verify the existence of rules contemplating the
current execution scenario. The other is used to add a new rule
in case that no such rules were detected.
 These adaptive functions called Ad1 and Ad2, execute after
and before their calling rules, respectively. Ad1 only sets the
value of the state variable to D (determined) when an existing
rule can manage the current state of conditions. When no rule
can handle the current conditions, a new rule (31) is in charge
to set the state variable to ND (non-determined). This variable
is set back by the execution of Ad1, in case that a rule was
found. On the next step, if the state is equal to ND, another
new rule (32) executes the Ad2 adaptive function.
 The Ad2 adaptive function is in charge to add 6 new rules.
These new rules will transition to the current mode from any
other mode given the current conditions. The result for this is
that, whenever in the future, when the same conditions repeat,
they will transition to the mode in which those conditions
were found initially. The rationale behind this is that, when a
new set of conditions is found, is probably because only one
new different category process was created, where there is a
whole group of processes of an existing category already
running. By doing this, we try to maintain the benefits of the
current mode for the existing processes.

 The implementation of this mechanism onto the
subjacent cDT in order to generate the first SODIUM process
scheduler ADT is shown as the Table 6.2.

 Adaptive Functions Declarations Rules

Ad1 Ad2

0 1 2 3 …
2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

 H ? H + + + + + + S R R R R R R R R R R R E

Conditions

Current
Mode

 R
R

P
R

Q
V

F
C

S
J

B
T

R
R

R
R

R
R

…
F
C

S
J

S
J

B
T

B
T

State … N
II C1 C1 C1 C1 C1 C1 - x - … - - - - -
 M C2 C2 C2 C2 C2 C2 x - - … - - - - -
ES C3 C3 C3 C3 C3 C3 - - - … x x - x -

 WEB C4 C4 C4 C4 C4 C4 - - - … - - - - -
P C5 C5 C5 C5 C5 C5 - - x … - - - - -
S C6 C6 C6 C6 C6 C6 - - - … - - x - x

Actions
func() $m $m $m $m $m $m 0 a b d … q q u x y
State= D … N

Adaptive
Functions

Ad1 A x x x x x x x x x x x x x x x x
Ad2 B x

Table 6.1 – Normalized cDT

Table 6.2 – Adaptive Decision Table for SODIUM Process Scheduler

 The action to be performed by every new rule is set by the
$m function that takes the rule’s own starting mode and the
current mode –as destination mode– as parameters to obtain
the specific set of actions for that transition. The result of
executing $m are exactly those found in the Table 3.2.
 An example of its adaptive functions can be illustrated as
when a new scenario is detected in which the (M) and the (S)
conditions are detected simultaneously. Six new rules are
created to handle those conditions in combination with the six
possible current modes, and are added to the subjacent cDT.
The Table 6.3 shows the effect of their execution, highlighting
the new rules in shaded green.

However basic, this mechanism actually learns from the

users’ behavior, and will converge into a complete 720 rules
cDT differently for each user, or each run. On the other hand,
it shows some limitations on the fact that, once created, the
new rules can’t be modified, even if the reaching scenario
should indicate a new transition for that rule. Also, it doesn’t
provide the ability to contemplate multiple criteria for the
decision making process. These problems are addressed by
using the extensions shown in the following section.

VII. EXTENDED ADAPTIVE DECISION TABLE

The ADT obtained in the previous section allows the creation
of new rules that contemplate conditions that were not
included in the original cDT. However, the only criterion used
for determining the transition actions was that of maintaining
the original current mode. This criterion, doesn’t contemplate
the usage of direct indicators of performance such as the
metrics, nor a mechanism to alter the already created rules.
Therefore, it is necessary to extend the definition of our ADT
in order to include specific functions that could decide which
mode to utilize based in the relation between the processes
categories and the maintained metrics.

 We will recur to the formal definition of the EADT from
[13] and [14] in which multiple criteria can be defined in order
to determine an alternative.
The original formulation consists on a base ADT such as the
one obtained in the Table 6.2 and the addition of auxiliary
functions (FM) that execute prior any other action and define
values for variables that those actions will use.
 In our case, we want to define the destination mode
parameter for the function $m using a multi-criteria method.
The required steps for defining the method consist in three
modules:

 Module I consists in the identification of the different
criteria –metrics, in our case– and alternatives –modes– for the
decision problem. Their quantitative relation will define, in
each case what alternative will be better for each scenario
taking the metrics as reference. In our case we define the a C
set of conditions, and an A set of alternatives as the following:

 Criterion Preference

Category %cpu #f tcv tw tr ts ov
 (II) 1 1 1 3 3 1 1
 (M) 3 1 1 3 1 1 1
 (ES) 1 3 1 1 3 1 1

 (WEB) 1 1 1 1 3 3 1
 (P) 1 3 3 1 1 1 1
 (S) 1 1 1 1 1 1 3

 Adaptive Functions Declarations Rules

Ad1 Ad2

0 1 2 3 …
2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

 H ? H + + + + + + S R R R R R R R R R R R E R R R R R R

Current Mode
 R

R
P
R

Q
V

F
C

S
J

B
T

R
R

R
R

R
R

…
F
C

S
J

S
J

B
T

B
T

R
R

P
R

Q
V

F
C

S
J

B
T

State … N
II C1 C1 C1 C1 C1 C1 - x - … - - - - - - - - - - -
 M C2 C2 C2 C2 C2 C2 x - - … - - - - - x x x x x x
ES C3 C3 C3 C3 C3 C3 - - - … x x - x - - - - - - -

 WEB C4 C4 C4 C4 C4 C4 - - - … - - - - - - - - - - -
P C5 C5 C5 C5 C5 C5 - - x … - - - - - - - - - - -
S C6 C6 C6 C6 C6 C6 - - - … - - x - x x x x x x x

func() $m $m $m $m $m $m 0 a b d … q q u x y c h m 0 u y
State= D … N

Ad1 A x x x x x x x x x x x x x x x x x x x x x x
Ad2 B x

Table 7.1 – Criterion preference by category

Table 6.3 – Example of an ADT creating new rules for a formerly non-contemplated (M) and (S) Scenario

 Module II consists in obtaining a Z matrix of performance
for each combination of criteria and alternatives. Using the
Saaty fundamental scale for comparing the relative importance
of each criterion with each category we could elaborate the
Table 7.1.

On the other hand, we define the importance of each
criterion pair will vary regarding the amount of processes of
each category that is ready to execute multiplied by the
criterion preference shown in the Table 7.1. For example, for
an scenario where 2 (II) category processes, and 1 (S) category
process are ready, the importance of the tw and tr metrics will
be equal to 6, and that of the ov will be 3.

With those values in mind, a criteria pair preference can be
elaborated for the example as the one shown in the Table 7.2.

 Criterion Preference

Criteria %cpu #f tcv tw tr ts ov

%cpu 1 1 1 6 6 1 3
#f 1 1 1 6 6 1 3
tcv 1 1 1 6 6 1 3
tw 1/6 1/6 1/6 1 1 1/6 3
tr 1/6 1/6 1/6 1 1 1/6 3
ts 1 1 1 6 6 1 3
ov 1/3 1/3 1/3 1/3 1/3 1/3 1

The values of the Table 7.2, obtained for this particular

example, will vary depending on the current conditions
scenario and the amount of processes per category.
Nevertheless, continuing with the example, a normalized final
Z matrix of performance can be obtained as the one shown in
the Table 7.3.

 Criterion Preference

Total
Preference

Category %cpu #f tcv tw tr ts ov

Multiplier x 1 x 1 x 1 x 6 x 6 x 1 x 3

RR 0,35 0,13 0,05 0,18 0,16 0,23 0,15 0,17
RRPR 0,35 0,13 0,15 0,54 0,16 0,03 0,15 0,28
RRQV 0,12 0,13 0,30 0,02 0,02 0,03 0,45 0,25
FCFS 0,06 0,13 0,30 0,02 0,02 0,03 0,45 0,11
SJFS 0,06 0,38 0,30 0,02 0,02 0,03 0,05 0,06
BTS 0,06 0,13 0,05 0,06 0,16 0,68 0,05 0,13

It can be seen on Table 7.3 that, for the example with two

(II) processes, and one (S) process, results in a better
preference for the RRPR mode, just above that of the RRQV
mode. The Z matrix will be regenerated completely based in
the amount of ready processes per category each time that an
adaptive function calls to a z_gen() named function. Another
z_get() named function will be used to obtain the most
preferred scheduling mode from the current newest Z matrix.

Module III consists in the development of the functions for
the insertion of new rules for the non-contemplated scenarios
in the moment that they are detected. This was already
achieved in the TDA presented in the Table 6.2.

 It will only take to add calls to the z_gen() and z_get()
functions along with a new variable m to hold their obtained
value. In the Table 7.4 the final form of the EADT for the
SODIUM process scheduler is shown.

Until now only brief tests and simulations for testing the

EADT performance regarding different simple scenarios has
been conducted due to the initial complexity of the
implementation. Their results were satisfactory although yet
not sufficient to determine its full potential. We estimate that
in the next few months, new developments will support the
usage of this powerful tool.

 Adaptive Functions Declarations Rules

Ad1 Ad2

0 1 2 3 …
2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

 H ? H + + + + + + S R R R R R R R R R R R E

Conditions

Modo
Actual

 R
R

P
R

Q
V

F
C

S
J

B
T

R
R

R
R

R
R

…
F
C

S
J

S
J

B
T

B
T

Estado … N
II C1 C1 C1 C1 C1 C1 - x - … - - - - -
 M C2 C2 C2 C2 C2 C2 x - - … - - - - -
ES C3 C3 C3 C3 C3 C3 - - - … x x - x -

 WEB C4 C4 C4 C4 C4 C4 - - - … - - - - -
P C5 C5 C5 C5 C5 C5 - - x … - - - - -
S C6 C6 C6 C6 C6 C6 - - - … - - x - x

Extended Adaptive
Actions

z_gen() x
z_get() m

Actions
func() $m $m $m $m $m $m 0 a b d … q q u x y
Estado= D … N

Adaptive Functions Ad1 A x x x x x x x x x x x x x x x x
Ad2 B x

Variables m V x

Table 7.3 – Matrix Z of alternatives preference

Table 7.2 – Relative preferences between criterion pairs

Table 7.4 – Final form of the EADT for the SODIUM process scheduler

VIII. CONCLUSIONS AND FURTHER WORK

With the usage of EADTs we were able to figure out
alternatives for execution conditions of an aspect of an
operating system that were too complex or inaccessible to
figure out a priori. It also provided the kernel with the
capability of changing the existing rules based on the new
process usage behavior of each user. While these features may
be possible to attain otherwise, none of the other existing
adaptive devices provide such an intuitive mechanism for
specifying rules and adaptive functions.
 Although we are still lacking actual results from tests
conducted on a variety of complex scenarios, the preliminary
results on simple executions show that the decision tables
converged into ideal solutions in each case, and that the kernel
was actually learning from the process scheduler events. This
actually serves as a demonstration that, so far, it is possible to
create an automatic adaptive reconfiguration mechanism for a
kernel without the supervision or explicit interactions with the
users and their application.

There is still much potential to be harnessed from the
EADTs. For example, we are not yet using the measures from
the different metrics to evaluate each algorithm benefits from
the actual execution. Doing this would converge and replace
the initial heuristics on the algorithm-metrics relation tables.

Regarding SODIUM, there are other aspects of its design
that are yet to be analyzed and converted into adaptively
reconfigurable. That work should be done in the following
months, during which we would still testing the results of the
adaptive process scheduler.

Perspectives on the usage of adaptive mechanisms for
automatic non-interactive reconfiguration are promising.
These could be applied on any other home or enterprise
operating systems in the market without the need of re-
engineering their existing applications. An initial cost should
be paid, nonetheless; mechanisms for automatic
reconfiguration must be developed and provided as inputs for
the EADTs, conditions must be analyzed, and events must be
set.

REFERENCES
[1] S. MARTIN, N. CASAS, G. DE LUCA, “Diseño de un sistema operativo

reconfigurable para fines didácticos y prácticos”. 6° Workshop de
Tecnologia Adaptativa. San Pablo, Brasil, 2012.

[2] A. C. VEITCH, N. C. HUTCHINSON, “Kea – a dynamically extensible and
configurable operating system kernel”, 3rd International Conference on
Configurable Distributed Systems. Vancouver, Canada, 1996.

[3] C. COWAN, T. C. AUTREY, C. KRASIC, C. PU, J. WALPOLE, “Fast
concurrent dynamic linking for an adaptive operating system”. 3rd
International Conference on Configurable Distributed Systems.
Vancouver, Canada, 1996.

[4] B. N. BERSHAD, S. SAVAGE, P. PARDYAK , E. G. SIRER, M. E.
FIUCZYNSKI, D. BECKER, C. CHAMBERS, S. EGGERS, “Extensibility:
Safety and Performance in the SPIN Operating System”. 5th Symposium
on Operating Systems Principles. ACM, New York, United States, 1995.

[5] R. LEA, Y. YOKOTE, J. ITOH. “Adaptive operating system design using
reflection”. Object-Based Parallel and Distributed Computation. Volume
1107, Springer Berlin, 1996.

[6] N. CASAS, G. DE LUCA, M. CORTINA, G. PUYO, W. VALIENTE,
“Implementación de distintos tipos de memoria en un sistema operativo
didáctico”. XIV Congreso Argentino de Ciencia de la Computación. La
Rioja, Argentina, 2008.

[7] H. RYCKEBOER, N. CASAS, G. DE LUCA, “Construcción de un Sistema
Operativo Didáctico”. X Workshop de Investigadores en Ciencias de la
Computación. La Pampa, Argentina, 2008.

[8] A. SILBERSCHATZ, P. B. GALVIN , G. GAGNE. “Operating System
Concepts”. 8va Edición. John Wiley & Sons, New Jersey, United States,
2012.

[9] S. M. VARGHESE, K. P. JACOB, “Process Profiling Using Frequencies of
System Calls”. The Second International Conference on Availability,
Reliability and Security (ARES'07). Viena, Austria, 2007.

[10] R. MCDOUGALL, J. MAURO, “Solaris Internals”. Second Edition.
Prentice-Hall. California, United States, 2007.

[11] J. J. NETO, “Adaptative rule-driven devices - general formulation and a
case study”. Sixth International Conference on Implementation and
Application of Automata. Pretoria, South Africa, 2001.

[12] T. PEDRAZZI, A. TCHEMRA, R. ROCHA, “Adaptive Decision Tables A
Case Study of their Application to Decision-Taking Problems”.
Adaptive and Natural Computing Algorithms, Springer. Vienna, Austria,
2005.

[13] A. H. TCHEMRA, “Tabela de decisão adaptativa na tomada de decisões
multicritério”. Phd Thesis. Escola Politécnica, USP, San Pablo, Brasil,
2009

[14] A. H. TCHEMRA, “Adaptatividade na Tomada de Decisão Multicritério”.
4° Workshop de Tecnologia Adaptativa. Escola Politécnica, USP, San
Pablo, Brasil, 2010.

[15] T. L. SAATY , “Método de Análise Hierárquica”. McGraw-Hill. San
Pablo, Brasil, 1991.

Sergio Miguel Martin is a Software Engineer from
Universidad Nacional de La Matanza (UNLaM),
Buenos Aires, Argentina since 2010. He performs as
a teaching assistant on the operating systems class
since 2010; and on the automata and formal
languages class since 2011. He is currently finishing
his master thesis on Software Engineering on the
same university. His main investigation fields are
operating systems and high-performance computing.

Graciela Elisabeth De Luca Is a Systems Analyst from
the Universidad Tecnológica Nacional, and Bachelor of
Computer Science from the Universidad Católica de
Salta. Since 2005, belongs to the SODIUM research
group of the Universidad Nacional de La Matanza. Also
performs as professor for the Operating Systems Class.

Nicanor Blas Casas, Is a Software Engineer from the
Universidad the Universidad Católica de Salta. Since
2005, belongs to the SODIUM research group of the
Universidad Nacional de La Matanza. Also performs as
the associate professor for the Operating Systems Class.

