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Abstract 

Urban traffic management is one of the major concerns for big cities around the world, due to its negative impacts on society. 
Several approaches of traffic signal control based on artificial intelligence techniques or on control theory were proposed as 
alternatives to mitigate this problem. However, it is a challenge to reach a good solution, as the urban traffic is a complex and 
dynamic ecosystem. On this scenario, this paper proposes an adaptive biologically-inspired neural network that receives the 
system state and is able to change the behavior of the control scheme as well as the order of semaphore phases, instead of 
prefixed cycle-based ones. Proposed adaptive control was evaluated on a single intersection scenario. Despite analyzing the 
control of a single intersection, the model proposed is modular, allowing the control of multiple intersections. The analyses 
conducted herein showed that the model is robust to different initial conditions and has fast adaptation between system 
equilibrium states. Simulations with SUMO showed a better performance than a cycle-based traffic responsive control method 
regarding reactivity and capacity tests, in which the relevance of the constant monitoring and acting became evident. 
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1. Introduction 

The increase of traffic volume causes even more traffic jam due to the slow-paced and, the non-existent 
improvements in the urban traffic infrastructure. Traffic jam is a direct result of higher vehicle traffic over the city 
capacity and also unpredictive events like traffic accidents and climate effects. Healey and Picard1 analyzed the 
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impacts of urban traffic on human health, showing increased stress in situations of traffic jam. Furthermore, Grillo 
and Laperrouze2 discussed the effects of traffic jam on the Gross Domestic Product (GDP) and on the environment, 
attributing its main causes to the cost of fuel, the opportunity cost of the time citizens spend in traffic, and CO2 
emission. Traffic signal control is a cost-efficient alternative to improve the system efficiency, i.e., to increase the 
city capacity with the same urban infrastructure. Optimized vehicle flows reduce vehicle stops at traffic signals as 
well as their average travel times, preventing traffic jams. Different approaches have been proposed to control the 
traffic signals of urban networks, like ones based on the optimal control theory and on artificial intelligence 
techniques. However, it is challenging to find out a good solution for traffic signal control, because of the intrinsic 
complexity of the system. The urban traffic is dynamic and has uncertain nature, interdependent subsystems, 
nonlinearities, and great amount of variables, such as vehicle flows, vehicle queues and semaphore phase times.  

On this context, Castro3 investigated a model for traffic signal control based on the positive results of 
biologically-inspired neural networks for the control of complex systems, presenting its mathematical formalism, 
analyzing its behavior as well as the complex dynamic system, and evaluating its control performance. In contrast to 
other approaches, the proposed model does not have a prefixed order of semaphore phases, and thus is able to 
change control behavior in accordance to urban traffic state.  

2. Related works 

Initial solutions for traffic signal control were based on optimization methods that uses fixed green times for 
semaphores in order to reduce the average travel time of vehicles. As the urban traffic is a dynamic environment, 
adaptive approaches were then proposed to further decrease average travel time, readjusting semaphore green times 
during their operation. These control methods are also called vehicle actuated or traffic responsive, among which the 
most applied are LHOVRA4 and others. However, they have a centralized structure, having restricted control 
efficiencies due to the long time required to exchange information of all intersections and to make a global decision. 

Timotheou5 et al. adopted linearized macroscopic models of the urban traffic as a basis for model predictive 
control (MPC) methods that focused on the distribution of the prediction and control capacities. Zhao6 et al. stated 
that the use of macroscopic models to simplify urban traffic control limits its control efficiency, disregarding the 
complete dynamics of vehicles and semaphores. In addition, Gokulan and Srinivasan7 claim that macroscopic urban 
traffic models that consider system uncertainties or try to predict its behavior are inaccurate and computational 
intensive. Regarding artificial intelligence techniques, Srinivasan8 et al. proposed an artificial neural network for 
traffic signal control. The main advantage of control methods based on learning is that they do not require a model 
of the system. However, according to Gokulan and Srinivasan7 these methods demand an infeasible amount of data 
and training time to adequately represent the behavior of stochastic systems with many variables, such as the urban 
traffic. A common disadvantage of the aforementioned control methods is that they are cycle-based, i.e., they only 
adjust semaphore green times after each cycle, which limits the system reactivity and, thus, its efficiency. Hamilton9 
et al. proposed a more flexible approach, which is based on a linear model but does not establish a fixed phase order 
or cycle length and is able to change semaphore phases at any moment, obtaining an increase in control performance 
in comparison to a cycle-based control method.  

On the other hand, biologically-inspired neural networks differ from artificial neural networks as it explores 
more biological characteristics of real neurons in order to improve the overall dynamic behavior of the model, 
whereas one that focuses on the learning aspect of neural networks. Thereby, biologically-inspired neural networks 
do not usually have a training stage, choosing instead their synaptic weights to achieve a desired behavior. A variety 
of biologically-inspired neural networks were proposed for controlling dynamic systems, mainly in robotics. Robot 
control is similar to the control of complex dynamic systems, such as the urban traffic, because of the number of 
variables, nonlinearities, and environment uncertainties involved. Besides the unique structure of each neural 
network, these works adopt different types of neuron models, synapses and long and short term plasticity. Nichols10 
et al. proposed a pulsating neural network for robot control and adopted the leaky-integrator neuron model due to its 
low computational cost. Castro3 et al. proposed a biologically-inspired neural network for traffic signal control and 
validated it with comparative simulations. The proposed neural network adopts the same neuron model adopted by 
Yang10 et al. which represents the behavior of real neurons with low computational cost and is conventionally 
present in artificial neural networks. The proposed model has an adaptation mechanism, or short term plasticity. The 
proposed neural network has excitatory and inhibitory neurons and is more realistic concerning biological neurons. 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.05.394&domain=pdf
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impacts of urban traffic on human health, showing increased stress in situations of traffic jam. Furthermore, Grillo 
and Laperrouze2 discussed the effects of traffic jam on the Gross Domestic Product (GDP) and on the environment, 
attributing its main causes to the cost of fuel, the opportunity cost of the time citizens spend in traffic, and CO2 
emission. Traffic signal control is a cost-efficient alternative to improve the system efficiency, i.e., to increase the 
city capacity with the same urban infrastructure. Optimized vehicle flows reduce vehicle stops at traffic signals as 
well as their average travel times, preventing traffic jams. Different approaches have been proposed to control the 
traffic signals of urban networks, like ones based on the optimal control theory and on artificial intelligence 
techniques. However, it is challenging to find out a good solution for traffic signal control, because of the intrinsic 
complexity of the system. The urban traffic is dynamic and has uncertain nature, interdependent subsystems, 
nonlinearities, and great amount of variables, such as vehicle flows, vehicle queues and semaphore phase times.  

On this context, Castro3 investigated a model for traffic signal control based on the positive results of 
biologically-inspired neural networks for the control of complex systems, presenting its mathematical formalism, 
analyzing its behavior as well as the complex dynamic system, and evaluating its control performance. In contrast to 
other approaches, the proposed model does not have a prefixed order of semaphore phases, and thus is able to 
change control behavior in accordance to urban traffic state.  

2. Related works 

Initial solutions for traffic signal control were based on optimization methods that uses fixed green times for 
semaphores in order to reduce the average travel time of vehicles. As the urban traffic is a dynamic environment, 
adaptive approaches were then proposed to further decrease average travel time, readjusting semaphore green times 
during their operation. These control methods are also called vehicle actuated or traffic responsive, among which the 
most applied are LHOVRA4 and others. However, they have a centralized structure, having restricted control 
efficiencies due to the long time required to exchange information of all intersections and to make a global decision. 

Timotheou5 et al. adopted linearized macroscopic models of the urban traffic as a basis for model predictive 
control (MPC) methods that focused on the distribution of the prediction and control capacities. Zhao6 et al. stated 
that the use of macroscopic models to simplify urban traffic control limits its control efficiency, disregarding the 
complete dynamics of vehicles and semaphores. In addition, Gokulan and Srinivasan7 claim that macroscopic urban 
traffic models that consider system uncertainties or try to predict its behavior are inaccurate and computational 
intensive. Regarding artificial intelligence techniques, Srinivasan8 et al. proposed an artificial neural network for 
traffic signal control. The main advantage of control methods based on learning is that they do not require a model 
of the system. However, according to Gokulan and Srinivasan7 these methods demand an infeasible amount of data 
and training time to adequately represent the behavior of stochastic systems with many variables, such as the urban 
traffic. A common disadvantage of the aforementioned control methods is that they are cycle-based, i.e., they only 
adjust semaphore green times after each cycle, which limits the system reactivity and, thus, its efficiency. Hamilton9 
et al. proposed a more flexible approach, which is based on a linear model but does not establish a fixed phase order 
or cycle length and is able to change semaphore phases at any moment, obtaining an increase in control performance 
in comparison to a cycle-based control method.  

On the other hand, biologically-inspired neural networks differ from artificial neural networks as it explores 
more biological characteristics of real neurons in order to improve the overall dynamic behavior of the model, 
whereas one that focuses on the learning aspect of neural networks. Thereby, biologically-inspired neural networks 
do not usually have a training stage, choosing instead their synaptic weights to achieve a desired behavior. A variety 
of biologically-inspired neural networks were proposed for controlling dynamic systems, mainly in robotics. Robot 
control is similar to the control of complex dynamic systems, such as the urban traffic, because of the number of 
variables, nonlinearities, and environment uncertainties involved. Besides the unique structure of each neural 
network, these works adopt different types of neuron models, synapses and long and short term plasticity. Nichols10 
et al. proposed a pulsating neural network for robot control and adopted the leaky-integrator neuron model due to its 
low computational cost. Castro3 et al. proposed a biologically-inspired neural network for traffic signal control and 
validated it with comparative simulations. The proposed neural network adopts the same neuron model adopted by 
Yang10 et al. which represents the behavior of real neurons with low computational cost and is conventionally 
present in artificial neural networks. The proposed model has an adaptation mechanism, or short term plasticity. The 
proposed neural network has excitatory and inhibitory neurons and is more realistic concerning biological neurons. 
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3. Adaptive bio-neural network 

The scenario studied comprises a single intersection with four semaphore phases, shown in Fig. 1 along with the 
enabled vehicle flows of each phase. This intersection is more complex in terms of control because a part of the 
flows is enabled in more than one phase. The proposed bio-neural network is shown in Fig. 2. In the proposed 
model, each semaphore phase is represented by an excitatory neuron with intrinsic plasticity, which is the adaptation 
mechanism of the model. In the figure, sensorial receptors qa to qf represent the vehicle queues of lanes a to f, which 
are inputs of the system. Inputs qa to qf change in accordance to dynamic traffic behavior and induces two kinds of 
adaptation process into the bio-neural network. First type of adaptation is related to normal operation of the 
intersection when traffic in each lane is well balanced, which means qa to qf with similar value. In these conditions, 
the adaptation process tries to optimize the time of each semaphore phase. Second type of adaptation is related to the 
occurrence of any event when inputs qa to qf present severe unbalancement. In this situation, the adaptation 
mechanism can change the time of each phase or even suppress one of them. All of adaptation process is 
accomplished by the intrinsic plasticity that facilitates the transition between active neurons by progressively 
increasing the activation of inactive neurons and decreasing the activation of active neurons. The output produced 
by neuron activates the corresponding semaphore phase, enabling its vehicle flows with green lights. For simplicity, 
the yellow period of the traffic lights was excluded and considered as in the red period. According to Gokulan and 
Srinivasan7, the use of vehicle queues or lane occupations as system inputs is suitable, because they reflect the 
vehicle delay to cross the controlled intersection. Gerolimini and Skabardonis11 and Zhang12 reinforce this choice, 
demonstrating the decrease of the urban traffic system efficiency when a street saturates and causes the spillover 
effect. As the inputs of an intersection are the outputs of its immediate neighbors, weak couplings between 
neighboring intersections are established, does not requiring communication between intersections. 

 

 

Fig. 1. Intersection model and semaphore phases. 

 

Fig. 2. Structure of the biologically-inspired neural network. 

4 Castro et al/ Procedia Computer Science 00 (2015) 000–000 

In the proposed model, neurons q1 to q4 aggregate the inputs of each phase and do not have intrinsic plasticity, 
as biological bipolar neurons (Kandel13 et al.). Neurons p1 to p4 represent the phases of the semaphores, whereas 
neurons h1 to h4 represent their respective inhibitory neurons, which inhibit other phases activity with lateral 
inhibition dynamics. The model includes two types of inhibition: feed forward, which connects system inputs 
directly to inhibitory neurons, anticipating input changes and facilitating neuron state transition; and feedback, 
which reflects the current state of p neurons and maintains its activation by inhibiting the other p neurons. Thereby, 
synapses between q and h neurons originate feed forward inhibition, whereas synapses between p and h neurons 
originate feedback inhibition. Recurrent synapses of p neurons reinforce their activation, representing the effect of 
biological G-Proteins. 

The equations that govern the proposed neural network are based on the principles stated by Peláez and Andina14 
whose general form is given by (1), (2), (3) and (4). Equation (1) determines the activation of phase neurons, 
whereas (2) determines the activation of inhibitory neurons. Equation (3) determines the shift of the activation 
function of neurons, which is responsible for the adaptation mechanism of the model, whilst (4) determines the 
neuron output. 
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In the equations, Ap,i is the activation of phase neurons, whereas Ah,i is the activation of inhibitory neurons. 
Concerning the synaptic weights, wq is the synapses between inputs and phase neurons, wp to recurrent synapses of 
phase neurons, wh to synapses between inhibitory neurons and phase neurons, wqh to synapses between inputs and 
inhibitory neurons, and wph to synapses between phase neurons and inhibitory neurons. Ni is the set of system inputs 
Ij (queues of vehicles) of phase neuron i, whose output is denoted by Op,i. Mi is the set of inhibitory inputs Oh,k of 
phase neuron i, which are also the outputs of the inhibitory neurons. In (3), si is the shift of the activation function of 
neuron i, whereas Oi is its output and ξ is the shifting-rate of the activation function. In (4), Oi is the output of 
neuron i, Ai is its activation, si is the shift of its activation function and α is the slope of the activation function. The 
system inputs    are restricted by          and si, is also restricted by         

4. Evaluation of the proposal 

The proposed biologically-inspired neural network was implemented in MATLAB to evaluate its performance 
concerning its adaptation on traffic change. The scenario was modeled in a simulator of urban mobility, SUMO, and 
the software interface was accomplished by the protocol TraCI4Matlab (Gil15 et al.). All the simulation vehicles 
have the same size, according to the passenger car equivalent (PCE) assumption (Keller and Saklas165), and a 
stochastic driving behavior (sigma equals 0.5).   

In the simulations, the biologically-inspired neural network was compared to a well known traffic responsive 
control method, which adopts fixed cycles of two minutes and distributes the phase green times according to the 
number of vehicles in each lane, i.e., the same system inputs as the biologically-inspired neural network. The neural 
network parameters adopted for the simulations were: shifting-rate of the activation function ξ equal to 0.07; 
synaptic weight wq equal to 1, whereas wp and wqh equal to 0.4, and wh and wph equal to 0.3. 

As a dynamic system, the urban traffic is subject to sudden variations in traffic volume and distribution. In this 
study, the control methods reactivity is evaluated with their responses to a pulse of vehicle demand. Fig. 3 shows 
this pulse, which corresponds to a 95.2% increase in the vehicle demand for 5 minutes, as well as the points in 
which the control methods measure the system state and act accordingly. The traffic responsive (TR) control method 
has two control cycle configurations, 2 and 10 minutes, whereas the sampling of the biologically-inspired neural 
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network (BiNN) is so frequent that the points resemble a continuous line. Fig. 4 and 5 show the control methods 
responses to the pulse input.  
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scenario, but with a control cycle of 10 minutes, instead of 2 minutes. In spite of having the same vehicle demand, 
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terms of maximum vehicle queue. In the first scenario, which has only a demand increase, the responsive control 
method does not need to adjust the green times distribution, showing a performance comparable to the biologically-
inspired neural network. However, the second and third scenarios show that control cycles of 2 and 10 minutes are 
not small enough to react to a 5 minutes pulse of traffic redistribution, causing the observed decrease in control 
performance.  

Concerning the biologically-inspired neural network, the results of two simulation scenarios are presented in Fig. 
5. In the Scenario 1, the demand pulse has equal demand distribution, whereas in the Scenario 2 the additional 
vehicle demand regards only one street of the intersection. The results show an increase of 38% in the maximum 
vehicle queue of the second scenario in comparison to the first one, due to the concentration of demand in only one 
street. Nevertheless, the maximum number of vehicles at the intersection remains the same in both scenarios and is 
better than the responsive control. Another evaluation criterion is the capacity of control vehicle demand they 
without saturating. The number of vehicles in the controlled intersection is measured under different vehicle flow 
rates in three-hour simulations. Fig. 6 shows the simulation results, in which the red lines represent the performance 
of the traffic responsive control method and the blue lines represent the performance of the biologically-inspired 
neural network. Each line corresponds to a simulation run with constant vehicle flow rate, whose value is displayed 
on the right-hand side of the figure. The maximum number of vehicles at this intersection is 630. 
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The results in Fig. 6 show that, for equal vehicle flow rates, the performance of the biologically-inspired neural 
network is better in all cases. This is due to two main aspects of the model proposed: its adaptability and reactivity. 
The graphics slopes indicate the speed at which the vehicles accumulate into queues, and correspond to the 
difference between the control methods adaptability and the current vehicle demand. The traffic responsive control 
method is still able to withstand a demand of 1964 vehicles per hour for three hours without saturating, regardless of 
the vehicle demand being 9.1% higher than the method. On the other hand, the biologically-inspired neural network 
does not saturate under a demand of 3086 vehicles per hour for three hours, which is 14.3% higher.  

5. Conclusion 

This paper proposed an adaptive traffic signal control based on a biologically-inspired neural network applied to 
the scenario of urban complex and dynamic system. 

The model used allows implementing adaptive control scheme that can change each semaphore cycle time, as 
well as, change in the sequence of cycles. 

The performance evaluation attested that the proposed model has higher adaptability and capacity than the 
previous traffic responsive control method, which is mainly attributed to its flexible and constant system monitoring 
and acting possibility. Thereby, the proposed model overcame the aliasing effect, which deteriorates the 
performance of cycle-based control methods. 

Future research includes stability analysis with the system eigenvalues and, thus, the extension of the model 
mathematical formalism to determine its parameters according to the desired behavior. Thereafter, the emergent 
system behavior of the control of multiple intersections will be investigated considering green wave formation and 
spillover prevention, and the model auto-organization and fault tolerance will be evaluated. 
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