

Abstract— This paper presents a review of the literature about

the work on the model-based testing area to generate test cases for

adaptive systems. We present a brief definition of the testing

software activity, its importance as general parameter of software

quality, and the particular need for having proper methods to

perform it the domain of adaptive systems. We describe as well, the

core principle bellow adaptive technology and present the

reasoning for the need performing automatic testing for these

systems. As result of our literature review we recover the most

used formalisms and testing strategies used for adaptive

technologies. Finally we present some insights and conclusions

derived from the information we gather about the matter of model-

based testing adaptive systems.

Keywords— review, adaptivity, testing, state machine, test

cases, software testing tools.

I. INTRODUCTION

esting is a significant part of software engineering and

with the evolution of computer languages, methodologies

and techniques that speed up the implementation of complex

systems the task for testing and guaranteeing the quality has

become increasingly demand [1]. There are several

definitions for what is testing and what it aims according with

different approaches and methodologies. Highly

recommended documentation and specification about the

testing process and its taxonomy are provided at [2] [3]. Even

though, a in [4] Miller defines the goal of testing as:

 ―to affirm the quality of software systems by

systematically exercising the software in carefully controlled

circumstances.‖

In Miller’s approach, a good test is one that has a high

probability of finding an as yet undiscovered error, and a

successful test is one that uncovers an as yet undiscovered

error. As critical as it is, this process can be very time and

resource consuming, being applied in different parts of the

software developing cycle, from specification to maintenance.

According to [1], by 2001, testing typically consume from

40% up to 50% of the software development effort.

Unfortunately, even being as critical as it is, the carry out of

testing as formal and strict process is not usually integrated

within the software development process [5]. As consequence,

some of practitioners on the software industry consider it too

expensive, case involves the production of artifacts useful for

testing, but not considered at the beginning, i.e. clear or formal

requirement specification. However, the guarantee of the

 R. Caya, Universidade de São Paulo (USP), São Paulo, São Paulo, Brasil,

rosalia.caya@usp.br

J. J. Neto, Universidade de São Paulo (USP), São Paulo, São Paulo,

Brasil, joao.jose@poli.usp.br

quality of a software is a feature that different enterprises

demand, some because it is the attribute that identify the

trademark, and other because the critical nature of the system,

in terms of reliability and robustness, established to be so, i.e.

high-confidence medical cyber-physical systems [6].

Particularly, those technologies that manifest a mechanism

that allows them to self-managing the decision over changes

in its own configuration on run time, technologies that

implement adaptive features, have being increasingly research

in the past decade [7]. This interest might be consequence of

the new needs exposed by the users of the, so called,

―Information Society‖ that claim for flexible systems that can

respond to the constant changes in their environments. The

whole work at the Laboratório de Tecnologias Adaptativas

(LTA) at the University of São Paulo focuses in the concepts,

theories and mechanisms that model and implement adaptive

behavior. Systems and devices that are complex,

heterogeneous and perform dynamic changing behavior can be

found in a very wide spectrum of areas, some examples are

[8]: Virtual Reality applications, Multi-agent Systems [9],

Simulations, Natural Language Processing, Human-Computer

Interaction, Computing Theory, Organization and

Orchestration of service-oriented software, Pattern

Recognition strategies, and many more. An additional care

must be taken when looking for adaptive systems and that is

the proliferation of terminology [10] that tries to comprise the

phenomenon that characterizes adaptivity: self-managing the

changes in the configuration of the system (reflected by its

behavior) at run time and as consequence of external stimuli.

The motivation for this work is to identify which elements

from the testing field can assist developers to examine quality

parameters in adaptive systems.

Our objective is to review literature to retrieve the main

approaches followed in the area of testing to convey

formalism, techniques, strategies that allow the specification

of adaptive systems, followed by the generation of test cases

that are adequate to guarantee the quality of the system.

The next sections in this document are organize as follows:

Section II describe the main concepts related to this work, so it

present testing as activity in software development, its

classical approaches and formalisms. In the same way, we

present the definition some of the well know strategies to

conduct testing and to guarantee the quality of a software:

Model-Based testing and Property-based testing. Section III

we present the definition of Adaptive Technology and its basic

features. Section IV describes the formal languages and

models used in the literature to perform software testing for

adaptive systems. Section V describes the results and insights

R. Caya, J.Neto

Literature review of formal testing on Adaptive

Systems

T

WTA 2017 – XI Workshop de Tecnologia Adaptativa

119

we were able to reach after performing the literature review.

Finally, Section VI state the conclusions of the review, some

of the difficulties founded and possible future works in the

endeavor of applying MBT to adaptive systems.

II. TESTING: DEFINITIONS AND APPROACHES

In this section we define testing as activity in the software

development life cycle, the diffent approaches followed by

researchers from several fields and some of the formalisms

used for work in this area.

A. Testing as activity

The task of test a program is at least as old as computing

itself. However, Software industry have suffer tremendous

growth over the past three decades. Software applications

have proliferated from the original task-oriented scientific

computing domains into our daily lives in such a way that

sometimes we do not realize that some kind of computation is

performed when we do everyday tasks. Of course, very highly

specialized and complex systems are coming to the rescue in

different arenas, such as cyber-physical systems, virtual

technology, and medical and military applications, as many

others. This proximity implies that software is required to

fulfill some quality attributes(to be usable, dependable, and

safe) because of its impacts in our daily lives, such as

economy, personal and national security, health, and safety.

Three decades ago, testing accounted for about 50% of the

total time and more than 50% of the total money expended in

a software development project—and, actually the percentage

is sort of the same today, with a tendency to grow. Actually,

global competition, outsourcing, off-shoring, and increasing

customer expectations have brought the concept of quality to

the forefront. Developing quality products on tighter schedules

is critical for a company to be successful in the new global

economy. Traditionally, efforts to improve quality have

centered around the end of the product development cycle by

emphasizing the detection and correction of defects. On the

contrary, the new approach to enhancing quality encompasses

all phases of a product development process, from a

requirements analysis to the final delivery of the product to the

customer. Every step in the development process must be

performed to the highest possible standard. As consquence, a

software system goes through four stages of testing before it is

actually deployed. These four stages, as mentioned in [11] and

shown in Figure 1, are known as unit, integration, system, and

acceptance level testing.

The objective of testing is to deliver a reasonably stable,

roboust system that can satisfy the needs of the user and at the

same time meeting a tight schedule, to discovering most of the

faults, and to verifying that fixes are working and will not

result in new faults. In general, software testing is a highly

labor intensive task, it comprises a number of distinct

activities, and it consumes a lot of resources: time and human.

This high cost is one of the reasons why test automation is

very attractive. With the help of proper tools the durations of

those tasks can be shortened, and the skills of est engineers

can be focus in designing and developing better and refined

strategies to generate automated test cases instead of manual

and extenuating work.

Figure 1. Software Testing Four Stages presented at [11].

B. Classical Approaches

As stated before, seems that test automation may be of

great help, but it comes with a cost: sufficient time and

resources need to be allocated for the development and

maintaining of an automated test suite. Different approaches

consider the sources from which it will be designed, and

others consider the moment in the software life-cycle in which

testing will be applied.

In the first case, test cases need to be designed by

considering information from several sources, either from the

requirements specification of a system (functional or black

box testing) or from source code (structural or white box

testing). In specification-based testing a key element is that the

requirements had been specified in a formal manner, so they

are a precise and detailed description of the system’s

functionality and constraints so the can be a the point of

reference for test data selection and adequacy.

In the second case, it is necessary to distinguish between

two similar concepts related to software testing: validation and

verification. In case of validation, it establishes the

correspondence between a system and users’ expectations. In

this type of testing a key element is the specification of what

functionality is needed and which additional properties the

system should posses. The objetive of validation is to

determine if the entire system meets the customer’s needs and

expectations. In case of verification, a key element is building

a high-level description (abstraction) of the functionality the

system is supposed to have. Then, the whole testing process is

about making sure of the correspondence of an

implementation of the software with its specification.

In case of this work we are interested in study the

automation of functional test cases towards verification of a

system. This can be done by property extraction or model-

WTA 2017 – XI Workshop de Tecnologia Adaptativa

120

based testing.

C. Model-based testing:

The goal of model based testing is to show that the

implementation of the system behaves compliant with this

model. Model based testing uses a concise behavioral model

of the system under test, and automatically generates test cases

from the model [12].

As mention before, the goal of testing is to identify

differences between the behavior of the implementation and

the intended behavior of a system under test (SUT), as

expressed by its requirements [13]. Usually, the model of the

SUT is given as a black box that accepts inputs and produces

outputs, but also exists testing processes that work with white

and gray box approaches [3]. Model-Based Testing (MBT) is

an area of testing in which the work relies on explicit abstract

formal behavior models that encode the behavior of the SUT

or its execution environment or sometimes both of them [14].

In this context, abstraction is not only beneficial, but also

necessary for hiding unnecessary programming details as well

as reducing the complexity of the system. However, it is also

essential for the test model to be detail enough in order to

generate effective test cases. The model must describe

possible input/output sequences, and is linked to the

implementation by a conformance relation. Finding the right

level of abstraction for the test model is one of the challenges

in MBT and is for now regarding to the test team.

The basic idea, and main practical advantage, of MBT is

that from a formal or semi-formal model complete test cases

can be generated. Another expected advantage of MBT is that

it is hope to mitigate some well know problems of deriving

tests ―by hand‖, most of all because of its dependency on the

approach of single engineers [3]. The ideas of MBT date back

to 70’s with studies about specification-based testing [15] [4].

Based on these studies, software system now can be specified

in more rigorous, understandable, clear ways, which has

brought great chances to improve automated functional testing

techniques. Meanwhile, software development has evolve

from standalone systems to complex, heterogeneous,

distributed, real-time, and component based systems. This

evolution joined by the advances reached in the area of formal

verification have led to an increased level of interest from the

academic field as well as from the industry.

However, the methods and tools used in MBT are

dependent of the creation of the formal model for the system

under test. This way, MBT does not replace traditional test

design, but supports them in a way that allows testers to

improve their understanding of the domain and to perform

tests more effectively and efficiently.

Nowadays, a variety of models and different notations are

available to present the system from different perspectives.

Some formal notations use Finite State Machines, grammars

and set theory to present precise semantics. Some other prefer

more visual representations, such as diagrams and tables, to

facilitate communication with different audiences. Some of

the most known models are:

 UML

 Statecharts and Extended Finite State Machines

 Petri nets

 Tasks models

 Z, Larch, VDM, Pre/Post Conditions, Estelle, and

λ-calculus, and π-calculus

The multitude of specification models and its semantics

allow different degrees of conduciveness for analysis and

impose a difficulty for people looking to develop

encompassing technology for model-based testing. In [16]

some of the typical misleading expectations,

misunderstandings and pitfalls are point out as:

 MBT solves all problems;

 MBT is just a matter of tooling;

 Models are always correct Test case explosion

will occur.

Nowadays, the research in this field has ignite. Several

international conferences (ACM TAAS, IEEE ICCAC,

SEAMS, Adaptive) have been created on the specific topic,

aiming to explore, develop, implement and compare different

techniques according to the features of the SUT. In the same

way, some of the most important events of the area of

Software Development have incorporated the MBT and

formal verification as a track of interest.

III. ADAPTIVE SYSTEMS

Adaptation is a promising approach to manage the

complexity embedded in contemporary systems [12] [7]. An

adaptive system is an entity able to adapt autonomously,

reconfigure at run-time, to internal dynamics according to

sensed conditions in the environment to achieve a particular

goal. [12] [17]. The increasingly complexity and

heterogeneity in nowadays systems make difficult to apply

static strategies to reflect dynamic behavior, so adaptive

methods and technology has become an important research

topic in many diverse application areas [18]. One of the more

recently growing fields in research related with adaptivity is in

Software Engineering [18] under the terminology of SaS (Self-

adaptive Systems). This way has become necessary to include

adaptivity in the research agenda of technological community.

Basically, an adaptive system, as shown in Figure 2,

comprises two parts: the managed system (also called system

layer, managed resources, core function, underlying

subsystem as presented in [7]) and the managing system (or

architecture layer, autonomic manager, adaptation engine,

reflective subsystem, adaptive layer, as presented in [7]) .

The underlying subsystem deals with the domain

functionality and the adaptive layer deals with the adaptations

of the managed system to achieve particular quality

objectives. The key underlying principle of adaptive systems

is complexity management through separation of concerns.

WTA 2017 – XI Workshop de Tecnologia Adaptativa

121

A. Adaptive Technologies at LTA

The Laboratório de Tecnologias Adaptativas (LTA) at the

Politechnical School of the University of São Paulo have

develop several researches studying adaptive technology since

the late 90s. As result several formalisms, techniques,

methods, tools and applications were develop based on the

incorporation on the features of adaptive behavior. In these

researches, adaptivity is applied in different areas, such as

formal languages [19], human-computer interaction [20],

formal models [21] [22], data mining, robotics [23], and so on,

proving the potential and versatility that the basic and intuitive

concept of adaptivity has. In the context of the works at the

LTA, adaptivity is understood as the ability a system has to

respond to external stimuli, deciding and applying dynamic

self-reconfigurations in its structure [8] and behavior [22],

taking into account the historical information stores from

previous executions [19]. This way the term adaptive

technology refers to the application of adaptivity to practical

and concrete purposes, meaning that an adaptive device is a

rule-driven device able in an independent way of applying

changes in that same ruleset and processing the corresponding

actions.

One interesting feature about adapting entities is that even

when most of the time different research laboratories do not

have close collaborations the approach about the foundations

of adaptivity seem concomitant. For example, the core

formulation developed and currently use to define adaptive

devices at LTA is in close concordance with the general one

presented at the begging of this section. In the formalism it is

possible to identify two major components [22]: the

underlying device (usually a non-adaptive one), and the

adaptive mechanism, responsible for the incorporation and

well performance of adaptivity. The fact that exist a major

concordance about the core formalism below adaptive

technology is very important because allow us to gather

several researches that otherwise could remain as

disseminated efforts. This work is actually one of several

efforts aiming at helping in the integrations of the theory of

adaptive technologies and other fields in computing.

However, the importance of study adaptivity does not hold

only in creating adaptive devices, it also covers the

understanding of the different features and properties implied

by it. For example, to correctly incorporate and create

adaptive devices on-the-fly, through strategies as negotiation

in Multi-Agent Systems or orchestration in Service-Oriented

Software, it will be necessary to identify the properties this

dynamic entities should satisfy. Furthermore, researching and

exploring literature about formal representation allows

developing appropriate tools to apply technology available for

non-adaptive software.

It also allow us to distinguish very closely related but

different terms by understanding its differences, as is the case

with adaptability and adaptivity.

Figure 2. Basic formulation of an adaptive device at LTA

IV. TESTING ON ADAPTIVE SYSTEMS

As we have seen before, the complexity and heterogeneity in

nowadays systems is requiring new technologies to be develop

and to measure the quality of such systems. In this context,

one major challenge in self-adaptive systems is to assure the

required quality properties [7]. This is the kind of task in

which the work developed in Testing (Validation and

verification) can assist. However, before applying the

algorithms ad strategies from testing it is necessary to satisfy

its requirements and avoid understand its constraints. As an

emerging partnership testing adaptive software needs to face

some intrinsic challenges, some of them are:

 Handle its natural complexity, uncertainty and

incomplete information

 The expansion of decision space

 Handling error propagation

We need a formal model to support the specification of such

systems [12], we need to understand how the adaptive features

are encoded in such models, we need to choose the proper

testing criteria to check those properties [12], and we need to

use some kind of formalism to process the model and generate

the test cases. Adaptive features are, in formal terms,

behavioral properties [12] in the system.

The necessity of testing adaptive systems has been

recognized not only by the academic community researching

in adaptive behavior, or the software development arena, it has

being pointed out as a necessity in the testing

community [24].Because this systems are increasingly

entering the industry venue and there is need for certification

from costumers [17]. It is necessary to provide validation and

verification methods to motivate the adoption of adaptive technology

by industry and unlock the potential of adaptivity beyond academic

arena [25]. Notwithstanding, as we have stated before the task of

WTA 2017 – XI Workshop de Tecnologia Adaptativa

122

testing is by itself very extenuating even in the case of software with

classical behavior, so in the case of adaptive, mostly changing, partly

undefined behavior the complexity rises. This way, is not possible to

perform the activities required for testing by hand because the

amount of information that needs to be consider by testers, for

designing the tests, incorporate into the test strategy,

monitoring, and evaluate, is huge and make the task a

herculean mission for engineers.

To design and develop automatic test case generation it is

fundamental to describe the system’s behavior in a precise

way. This is the main objective of formal specification

techniques.

Formal specification differs from other type of

specification in its high level of detail, precision and

correctness. A formal specification language is compose by a

clear syntax, a precise semantics within the domain and a

proof theory [26]. Whereas other notation aim for more visual

or user-friendly presentations, formal languages usually have a

syntax based in mathematical techniques that allows analyzing

and applying reasoning over it. The branch of mathematics

used is discrete mathematics and the mathematical concepts

are drawn from set theory, logic and algebra. The use of

formal methods is increasing in the area of critical systems

development, where emergent system properties such as

safety, reliability and security are very important. In such

areas, the possibility of automatic derivation over an

specification is one of the main advantages of formal

languages over informal ones. Two fundamental approaches to

formal specification have been used to write detailed

specifications for industrial software systems. These are:

algebraic and model-based. A basic description of the most

used techniques in each case will be given in the following

sections.

B. Languages for formal specification of Adaptive Systems

The principle in this approach is to specify a system as a

structured collection of mathematical functions. The can be

grouped by defining algebraic structures, logical theories or as

a structured collection of processes.

Some of the formal languages used in studies to specify

systems with dynamic reconfigurations, such as adaptive

systems, are:

 Process calculi: is a family of approaches for formally

modelling concurrent systems that provide a high level

description of interactions, communication strategies and

synchronization between a collection of individual

processes. The most used are π-calculus [27] [9] and

LOTOS.

 Timed automaton [7] [28]: is a theory for modeling and

verification of real time systems. It is basically a finite

automaton extended with real-valued variables.

C. Models for formal specification of Adaptive Systems

Model-based specification exposes the system state and

defines the operations in terms of changes to that state. Some

of the used models to describe adaptive systems are:

 Petri nets [29]: is a state-transition system mainly used to

work with distributed systems. It offers an exact

mathematical definition of their semantics, a well-

developed mathematical theory for process analysis and a

graphic representation. Petri nets are well suited for

modeling the concurrent behavior of distributed systems.

Several extensions of the original formalism created by

Carl Adam Petri at 1939 to meet some other features [30].

 Z: The Z notation is based upon set theory and

mathematical logic. The set theory used includes standard

set operators, set comprehensions, Cartesian products, and

power sets. The mathematical logic is a first-order

predicate calculus. A characteristic feature of Z is the use

of types. A variation called uSZ [13] has combine

statecharts with Z and temporal logic.

 Different kinds of EFSM (Extended Finite State

Machine) and hybrid approaches: Characterize the

required transitions from state to state. The properties of

interest are specified by a set of transition functions in the

state machine transitions [26]. Statecharts, are one of the

most used formalisms to specify dynamic systems

behavior because it offers hierarchy, concurrency,

broadcasting strategy and history states.

The main observation made at [7] is that regular algebra is one

of the most used modeling languages. One of the reasons for

that besides the strong community of formal verification in

computer science, is that the majority of studies working in

formal specification of adaptive systems formulate the

properties of interest in the modeling language they use for

modeling.

The use of traditional formal modeling languages such as

transition systems, automata, state machines and EFSM,

Markov models, graphs, and process algebras (µSZ [13], λ-

calculus, and π-calculus) is about equally distributed and most

of the time some type of logic (frst order, deontic, modal and

temporal) as property specification language is combined with

other modeling languages.

D. Models for testing adaptive systems

Some of the most used models in literature to design testing

strategies for systems that possess adaptive features are the

following:

 Linear Temporal Logic: convenient formalism for

specifying and verifying properties of reactive systems

[31]. The strategy for testing (by theorem proving or

model checking) is to express desired properties using

LTL operators and actually check if the model satisfies this

property. This model provides a particularly useful set of

WTA 2017 – XI Workshop de Tecnologia Adaptativa

123

operators for constructing LT properties without

specifying sets.

 Computation Tree Logic CTL* [7]: is a temporal logic

where full computation tree logic has no syntactic

restrictions on the applications of temporal operators and

path quantifiers, allowing explicit quantification over all

possible futures starting at some initial state.

 Communicating Sequential Processes: [32] formal

language for describing patterns of interaction in

concurrent systems [29]. CSP has been successfully

applied in industry as a tool for specifying and verifying

the concurrent aspects of a variety of different systems.

V. RESULTS FROM SYSTEMATIC ANALYSIS OF

LITERATURE

From the performed literature review, it is possible to obtain

some key insights about the state of the art of testing adaptive

software. They are presented grouped by concerns in an intent

for clarity.

A. About systematic reviews

There is a clear need for performing literature review, in

particular systematic review that allow incoming researchers

get organized, clear and synthetized information about specific

endeavors to solve current challenges. Following the same

logic it is also important to give continuity to work already

available to keep the information up to date [7], especially for

uses in industry.

B. About Testing criteria for testing adaptive systems

Some well-known classic testing criteria have been applied in

adaptive systems, such as: simple, statement coverage, pair-

wise, dependency-based and path coverage giving some

results about quality. However, the need for exploring and

formulate proper criteria to specifically test adaption

properties remains a challenge [17] [24].

In the same manner, some requirements for testing adaptive

system have been developed in resent research projects [17].

A new approach is the one presented at [24] called Veritas, in

which a technique for generating test cases that evolves and

customize the set of test cases, and/or parameters, to

correspond the current conditions of the adaptive system.

C. About testing models for adaptive systems

Some models have been used to specify adaptive systems,

most of them were recommended by literature because they

consider properties closely related to adaptivity such as:

concurrency, distributive components, communication

strategies, and historical records. Most existing formal

approaches for self-adaptive systems assume a central point of

control to realize adaptations [12].

A particular innovative proposal for organizing the testing

activity is the one made in [12] and presented at Figure 3

called zones in the state space for different behaviors of

adaptive systems. In the normal behavior zone, the system is

performing its canonical functionality. In the undesired

behavior zone, the system has entered in a state where

adaptation is required. In the adaptive behavior zone, the

system is adapting itself

to manage the undesired behavior, if the adaptation succeed

the adjusted system will return to a normal behavior. In case

the adaptation fails or generate consequences that can no be

properly handled by the system it will enter in the last zone.

Finally, the invalid behavior zone corresponds to states

where the system should never be. One of the most interesting

contributions of this mapping model is the possibility to map

properties of interest for testing with respect to the system

model using transitions between different zones.

Another interesting proposal is one presented at [33]. Their

approach uses evolutionary computation to adjust

requirements-based test cases at run time so the test suite can

handle different system and environmental conditions.

Figure 3. Zones in the space state of an adaptive system.

D. About properties of interest in adaptive systems

From the studies reviewed [7] [25] [24] [33] [27] we can

report that the top concerns of interest in adaptation are the

following:

 efficiency/performance,

 reliability,

 resilience [25]

 guaranteeing functionality, and

 flexibility [12].

WTA 2017 – XI Workshop de Tecnologia Adaptativa

124

Other properties measure through model testing are:

robustness [25] [12], and correctness of adaptations [12].

Traditional properties, including safety, liveness and

reachability [12] and deadlock are tested too, but in less

frequency.

VI. CONCLUSION

After performing the review we arrive to some conclusions

about the challenges that remain open and some of the issues

in this research field that require attention from the academic

community.

First, we do not found models developed to specify the

particularities of adaptive systems behavior. There are

formalisms that provide some tools to translate adaptive to

some of its properties, but some of them do not allow an entire

mapping. Moreover, the very use of formal methods as

evidence of system properties remains limited. The

development of environment models are an essential condition

for model based testing of runtime qualities, which is central

to self-adaptation [12]. It allows an engineer to specify in a

precise manner the failure scenarios of interest and the

conditions under which the failures happens.

Second, no standard tools have been emerged for formal

modeling and verification of adaptive systems. [7].

Third, a particular difficult step in the testing activities

becomes extremely complex in case of adaptive systems:

identify the properties or concerns it is important to test.

Several factors need to be consider: the domain of the system,

the focus of the test, the strategy of the testing criteria, and the

processing of the results. In the literature review we observed

that most of the self-* properties (self-healing, self-

configuring, and self-optimizing, self-organizing) which are

able to form emergent behavior are not properly specified in

testing studies. Actually, only self-organizing property has

being point out as flexibility in some studies [24].

Four, once we know the properties we need to test selecting

the right testing criteria according to them becomes a

cumbersome task. The test engineer must take into account

controlling the combinatory explosion product of either state

space, decision space, path or propagation at executing the

strategy. Few information about this concern was found in the

literature review, which raises the question about how to deal

with these dangers in an efficient way.

Five, managing the testing activity requires not only good

technology, but also well prepared managers. This way,

Software testing engineers need to be properly train in the use

of formal methods to be able to design suites of tests, evaluate

the adequacy of testing criteria and analyze the results with

mathematical methods. Most of the time testing theory is not

included in the curricula of several courses of either software

engineering or Computer Science.

Six, there is a need for optimizing test strategies to reduce

the consuming of resources, high costs, tenuous manual

efforts, and processing of failure at test design activities.

Finally, we considered that performing a systematic

revision help us to assemble a consistent vision about

adaptivity at two levels: an inner level and an outside level. At

inner level we could verify that adaptivity consist on a simple

and intuitive concept, a feature, that can be applied to solve or

empower different areas. At the outside level, we could gather

information in a systematic and organized way and verify the

different potential areas in which adaptivity can be beneficial.

This way we consider that systematic reviews help to

deeply understand the area of interest and the key information

about our particular problem. It is our thought that motivating

researchers at early stages of academic life is very fruitful to

strength and clarify the emerging area of adaptive technology.

VII. REFERENCES

[1] L. Luo, "Software testing techniques - technology

maturation and research strategy," Institute for Software

Research International, Carnegie Mellon University,

Pittsburgh, 2001.

[2] M. Y. Shafique, "A systematic review of state-based test

tools," International Journal on Software Tools for

Technology Transfer, vol. 17, no. 1, p. 59–76, February

2015.

[3] M. Utting, A. Pretschner and B. Legeard, "A taxonomy

of model-based testing approaches," SOFTWARE

TESTING, VERIFICATION AND RELIABILITY, vol. 22,

p. 297–312, 12 April 2012.

[4] E. F. Miller, "Introduction to Software Testing

Technology," in Tutorial: Software Testing & Validation

Techniques, Second ed., Vols. IEEE Catalog No. EHO

180-0, IEEE Computer Society, 1980, pp. 4-16.

[5] A. C. Dias Neto, R. V. M. Subramanyan and G. H.

Travassos, "A survey on model-based testing approaches:

a systematic review," in Proceedings of the 1st ACM

international workshop on Empirical assessment of

software engineering languages and technologies: held

in conjunction with the 22nd IEEE/ACM International

Conference on Automated Software Engineering (ASE)

2007, Atlanta, Georgia, 2007.

[6] E. A. Lee, "Cyber physical systems: Design challenges,"

in 11th IEEE International Symposium on Object and

Component-Oriented Real-Time Distributed Computing

(ISORC), Orlando, Florida, 2008.

[7] D. a. I. M. U. a. d. l. I. D. G. a. A. T. Weyns, "A Survey

of Formal Methods in Self-adaptive Systems," in

Proceedings of the Fifth International C* Conference on

Computer Science and Software Engineering, C3S2E '12,

WTA 2017 – XI Workshop de Tecnologia Adaptativa

125

Montreal, Quebec, Canada, 2012.

[8] J. J. Neto, "Um levantamento da evolução da

adaptatividade e da tecnologia adaptativa," vol. 5, no. 7,

p. 496–505, 2007.

[9] W. Jiao, M. Zhou and Q. Wang, "Formal framework for

adaptive multi-agent systems," in IEEE/WIC

International Conference on Intelligent Agent

Technology, 2003. IAT 2003, 2003.

[10] K. Compton and S. Hauck, "An introduction to

reconfigurable computing," IEEE Computer, April 2000.

[11] K. a. T. P. Naik, "Chapter 10: Test Generation from FSM

Models," in Software Testing and Quality Assurance:

Theory and Practice, New Jersey, John Wiley & Sons,

Inc, 2008.

[12] M. U. a. D. W. Iftikhar, "A case study on formal

verification of self-adaptive behaviors in a decentralized

system," in 11th International Workshop on Foundations

of Coordination Languages and Self Adaptation

(FOCLASA’12), 2012.

[13] K. Bogdanov, "Atomated testing of Harel's statecharts

(PhD. Thesis)," University of Sheffield, Department of

Computer Science, Sheffield, 2000.

[14] F. Siavashi and D. Truscan, "Environment modeling in

model-based testing: concepts, prospects and research

challenges: a systematic literature review," in

Proceedings of the 19th International Conference on

Evaluation and Assessment in Software Engineering,

New York, 2015.

[15] T. Chow, "Testing Software Design Modeled by Finite-

State Machines," IEEE Transactions on Software

Engineering, Vols. SE-4, no. 3, pp. 178 - 187, May 1978.

[16] The International Software Testing Qualifications Board,

"Model-Based Tester Extension Syllabus," The

International Software Testing Qualifications Board,

2015.

[17] G. Püschel, S. Götz and C. a. A. Wilke, "Towards

Systematic Model-based Testing of Self-adaptive

Software," in ADAPTIVE 2013, The Fifth International

Conference on Adaptive and Self-Adaptive Systems and

Applications, n Valencia, Spain, 2013.

[18] R. de Lemos, H. Giese, H. A. Müller, M. Shaw, J.

Andersson, M. Litoiu, B. Schmerl, G. Tamura, N. M.

Villegas, T. Vogel, D. Weyns, L. Baresi, B. Becker, N.

Bencomo, Y. Brun, B. Cukic and R. Desmarais,

"Software Engineering for Self-Adaptive Systems: A

Second Research Roadmap," in Software Engineering for

Self-Adaptive Systems II: International Seminar,

Dagstuhl Castle, Germany, October 24-29, 2010 Revised

Selected and Invited Papers, 2013.

[19] J. J. Neto and A. V. Freitas, "Using Adaptive Automata

in a Multi-Paradigm Programming Environment," in

International Conference on Applied Simulation and

Modelling, ASM2001 - IASTED, Marbella, Espanha,

2001.

[20] J. J. Neto, "Um Glosário sobre Adaptatividade ,

Laboratório de Linguagens e Técnicas Adaptativas," in

Memórias do WTA 2009 - Terceiro Workshop de

Tecnologias Adaptativas, São Paulo, Brasil, 2009.

[21] J. Neto and C. Pariente, "Adaptive Automata - a reduced

complexity," in Proceedings of the Conference on

Implementation and Application of Automata–CIAA,

Tours, France, 2002.

[22] A. H. Tchemra, "Aplicação da Tecnologia Adaptativa em

Sistemas de Tomada de Decisão," IEEE America Latina,

pp. 552-556, 2007.

[23] M. de Sousa, A. Hirakawa and J. Neto, "Adaptive

Automata for Mapping Unknown Environments by

Mobile Robots," in Proceedings of the Ibero-American

Conference on Artificial Intelligence, 2004.

[24] B. a. S. H. a. K. A. a. R. W. Eberhardinger, "Towards

Testing Self-organizing, Adaptive Systems," in

Proceedings of International Conference on Testing

Software and Systems: 26th IFIP WG 6.1 , ICTSS 2014,

Madrid, Spain, 2014.

[25] J. Cámara, R. de Lemos, N. Laranjeiro, R. Ventura and

M. Vieira, "Testing the robustness of controllers for self-

adaptive systems," Journal of the Brazilian Computer

Society, vol. 20, no. 1, pp. 1-14, 23 January 2014.

[26] A. v. Lamsweerde, "Formal Specification: A Roadmap,"

in Proceedings of the Conference on The Future of

Software Engineering, ICSE '00, Limerick, Ireland, 2000.

[27] A. M. a. A. K. Misra, "Formal Aspects of Specification

and Validation of Dynamic Adaptive System by

Analyzing Execution Traces," in 2011 Eighth IEEE

International Conference and Workshops on Engineering

of Autonomic and Autonomous Systems, Las Vegas,

Nevada, 2011.

[28] Uppsala Universitet; Aalborg University, "Uppaal,"

[Online]. Available: http://www.uppaal.org/.

[29] J. a. C. B. H. C. Zhang, "Model-based Development of

Dynamically Adaptive Software," in Proceedings of the

28th International Conference on Software Engineering,

ICSE '06, Shanghai, China, 2006.

[30] F. D. a. A. A. D. M. Zhou, "A hybrid methodology for

synthesis of Petri net models for manufacturing systems,"

IEEE Transactions on Robotics and Automation, vol. 8,

no. 3, pp. 350-361, June 1992.

[31] Stanford University, "Temporal Logic," Stanford

Encyclopedia of Philosophy, [Online]. Available:

http://plato.stanford.edu/entries/logic-

temporal/#LinTimTemLogLTL.

[32] C. A. R. Hoare, "Communicating Sequential Processes,"

Commun. ACM, vol. 21, no. 8, pp. 666-677, August

1978.

[33] E. Fredericks, B. DeVries and B. Cheng, "Towards run-

time adaptation of test cases for self-adaptive systems in

the face of uncertainty," in Proceedings of the 9th

International Symposium on Software Engineering for

Adaptive and Self-Managing Systems, 2014.

WTA 2017 – XI Workshop de Tecnologia Adaptativa

126

Rosalia Edith Caya Carhuanina was

born in Lima, Peru. She received the

degree of BsC (Bachelor in Science and

Engineering) with major in Computer

Engineer, and the professional degree of

Computer and Systems Engineer from

the Pontifical Catholic University of

Peru (PUCP, Pontificia Universidad

Católica del Perú) at Lima in 2009. Between the years 2007

and 2011, she participated of the activities at the Artificial

Intelligence Research Group at the Computer Engineering

Department of the same university. She holds a MsC degree in

Electric Engineering, with major in the field of Computer

Engineering from the University of São Paulo (USP) at São

Paulo, Brazil. She is currently a PhD student developing her

research in the Laboratory of Adaptive Languages and

Techniques (LTA). Her main areas of research are: Artificial

Intelligence, Natural Language Processing, Human-Machine

Interaction and Adaptive Technology.

João José Neto graduated in Electrical
Engineering (1971), Master in Electrical
Engineering (1975), PhD in Electrical
Engineering (1980) and Professor
(1993) at the Polytechnic School of the
University of São Paulo. Currently, he is
an associate professor at the Polytechnic
School of the University of São Paulo
and coordinates the LTA - Laboratory of

Languages and Adaptive Technology of PCS - Department of
Computer Engineering and Digital Systems of EPUSP. He has
experience in the area of Computer Science, with emphasis on
the Fundamentals of Computer Engineering. He works mainly
on the following topics: adaptive devices, adaptive
technology, adaptive automata, and in their applications to
Computer Engineering, particularly in adaptive decision
making systems, analysis and processing of natural languages,
construction of compilers, robotics, computer-aided teaching,
modeling of intelligent systems, automatic learning processes
and inferences based on adaptive technology

WTA 2017 – XI Workshop de Tecnologia Adaptativa

127

