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1. Introduction

Adaptivity is the term used to denote a phenomenon in which a device spontaneously changes its internal behaviour
in order to accommodate planned yet unexpected situations; these changes are triggered based solely on the device’s
own rule set and input stimuli, without any external interference1,2. A device is called adaptive if such feature is
available to the model as a whole.

Although offering no computational power boost, adaptivity provides mechanisms for expressing abstractions more
conveniently1,3,4. As a direct consequence, several model improvements are made possible and practically viable, such
as complexity reduction5, problem partitioning6 and hierarchical solving7, available at almost no sensible cost to the
user3.

Implementations of adaptive devices greatly vary, as well as the models themselves3,8,9. An early work of Cereda
and José Neto3 discussed potential bottlenecks and shortcomings on using common software engineering techniques
as a means to implementing programs with adaptive characteristics, with drastic – and sometimes fatal – impacts
on performance and stability. In this paper, we aim at extending the discussion to the adaptive mechanism, through
fine-grained instrumentation of the adaptive behaviour and its corresponding operations, from theoretical and practical
points of view.

Instrumentation is the capability of monitoring and recording a device behaviour and measuring performance dur-
ing its life cycle10. It plays a crucial role in evaluation and testing procedures, as the collected data provide basis for
achieving better performance and model improvements11,12,13. It is generally advisable to combine different metrics
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in order to obtain a more comprehensive representation of such collected data, in an attempt to reduce bias14,10. How-
ever, producing traces incurs runtime overhead and therefore may interfere with the device’s timing and perturb its
behaviour15, so instrumentation has to be kept to a minimum16,13,17. As to trace adaptive devices, we exposed their
inner workings to analysis and gathered relevant data on queries and operations.

This paper is organized as follows: Section 2 formally introduces the concept of an adaptive rule-driven device.
Section 3 presents presents the instrumentation metrics, as well as implementation aspects. Experiments and discus-
sions are presented in Section 4. Finally, conclusions are presented in Section 5.

2. Adaptive rule-driven devices

This section formally introduces the concept of a general adaptive rule-driven device. It is important to observe
that any non-adaptive rule-driven device may be enhanced in order to accommodate an adaptive behaviour while
preserving its integrity and original properties2. The adaptive mechanism acts as simple extension to the underlying
non-adaptive device.

Definition 1 (rule-driven device). A rule-driven device is defined as ND = (C,NR, S , c0, A,NA), such that ND is a
rule-driven device, C is the set of all possible configurations, c0 ∈ C is the initial configuration, S is the set of all
possible input stimuli, ε ∈ S , A ⊆ C is the subset of all accepting configurations (respectively, F = C − A is the subset
of all rejecting configurations), NA is the set of all possible output stimuli of ND as a side effect of rule applications,
ε ∈ NA, and NR is the set of rules defining ND as a relation NR ⊆ C × S ×C × NA.

Definition 2 (rule). A rule r ∈ NR is defined as r = (ci, s, c j, z), ci, c j ∈ C, s ∈ S and z ∈ NA, indicating that, as
response to a stimulus s, r changes the current configuration ci to c j, processes s and generates z as output2. A rule
r = (ci, s, c j, z) is said to be compatible with the current configuration c if and only if ci = c and s is either empty
or equals the current input stimulus; in this case, the application of a rule r moves the device to a configuration c j,
denoted by ci ⇒s c j, and adds z to the output stream.

Definition 3 (acceptance of an input stimuli stream by a rule-driven device). An input stimuli stream w = w1w2 . . .wn,
wk ∈ S − {ε}, k = 1, . . . , n, n ≥ 0, is accepted by a device ND when c0 ⇒w1 c1 ⇒w2 . . . ⇒wn c (in short, c0 ⇒w c),
and c ∈ A. Respectively, w is rejected by ND when c ∈ F. The language described by a rule-driven device ND is
represented by L(ND) = {w ∈ S ∗ | c0 ⇒w c, c ∈ A}.

Definition 4 (adaptive rule-driven device). A rule-driven device AD = (ND0,AM), such that ND0 is a device and AM
is an adaptive mechanism, is said to be adaptive when, for all operation steps k ≥ 0 (k is the value of an internal
counter T starting in zero and incremented by one each time a non-null adaptive action is executed), AD follows the
behaviour of an underlying device NDk until the start of an operation step k+1 triggered by a non-null adaptive action,
modifying the current rule set; in short, the execution of a non-null adaptive action in an operation step k ≥ 0 makes
the adaptive device AD evolve from an underlying device NDk to NDk+1.

Definition 5 (operation of an adaptive device). An adaptive device AD starts its operation in configuration c0, with
the initial format defined as AD0 = (C0,AR0, S , c0, A,NA,BA,AA). In step k, an input stimulus move AD to the
next configuration and starts the operation step k + 1 if and only if a non-adaptive rule is executed; thus, being the
device AD in step k, with ADk = (Ck,ARk, S , ck, A,NA,BA,AA), the execution of a non-null adaptive action leads
to ADk+1 = (Ck+1,ARk+1, S , ck+1, A,NA,BA,AA), in which AD = (ND0,AM) is an adaptive device with a starting
underlying device ND0 and an adaptive mechanism AM, NDk is an underlying device of AD in an operation step
k, NRk is the set of non-adaptive rules of NDk, Ck is the set of all possible configurations for ND in an operation
step k, ck ∈ Ck is the starting configuration in an operation step k, S is the set of all possible input stimuli of AD,
A ⊆ C is the subset of accepting configurations (respectively, F = C − A is the subset of rejecting configurations),
BA and AA are sets of adaptive actions (both containing the null action, ε ∈ BA ∩ AA), NA, with ε ∈ NA, is the set
of all output stimuli of AD as side effect of rule applications, ARk is the set of adaptive rules defined as a relation
ARk ⊆ BA×C×S ×C×NA×AA, with AR0 defining the starting behaviour of AD, AR is the set of all possible adaptive
rules for AD, NR is the set of all possible underlying non-adaptive rules of AD, and AM is an adaptive mechanism,
AM ⊆ BA × NR × AA, to be applied in an operation step k for each rule in NRk ⊆ NR.
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in order to obtain a more comprehensive representation of such collected data, in an attempt to reduce bias14,10. How-
ever, producing traces incurs runtime overhead and therefore may interfere with the device’s timing and perturb its
behaviour15, so instrumentation has to be kept to a minimum16,13,17. As to trace adaptive devices, we exposed their
inner workings to analysis and gathered relevant data on queries and operations.

This paper is organized as follows: Section 2 formally introduces the concept of an adaptive rule-driven device.
Section 3 presents presents the instrumentation metrics, as well as implementation aspects. Experiments and discus-
sions are presented in Section 4. Finally, conclusions are presented in Section 5.

2. Adaptive rule-driven devices

This section formally introduces the concept of a general adaptive rule-driven device. It is important to observe
that any non-adaptive rule-driven device may be enhanced in order to accommodate an adaptive behaviour while
preserving its integrity and original properties2. The adaptive mechanism acts as simple extension to the underlying
non-adaptive device.

Definition 1 (rule-driven device). A rule-driven device is defined as ND = (C,NR, S , c0, A,NA), such that ND is a
rule-driven device, C is the set of all possible configurations, c0 ∈ C is the initial configuration, S is the set of all
possible input stimuli, ε ∈ S , A ⊆ C is the subset of all accepting configurations (respectively, F = C − A is the subset
of all rejecting configurations), NA is the set of all possible output stimuli of ND as a side effect of rule applications,
ε ∈ NA, and NR is the set of rules defining ND as a relation NR ⊆ C × S ×C × NA.

Definition 2 (rule). A rule r ∈ NR is defined as r = (ci, s, c j, z), ci, c j ∈ C, s ∈ S and z ∈ NA, indicating that, as
response to a stimulus s, r changes the current configuration ci to c j, processes s and generates z as output2. A rule
r = (ci, s, c j, z) is said to be compatible with the current configuration c if and only if ci = c and s is either empty
or equals the current input stimulus; in this case, the application of a rule r moves the device to a configuration c j,
denoted by ci ⇒s c j, and adds z to the output stream.

Definition 3 (acceptance of an input stimuli stream by a rule-driven device). An input stimuli stream w = w1w2 . . .wn,
wk ∈ S − {ε}, k = 1, . . . , n, n ≥ 0, is accepted by a device ND when c0 ⇒w1 c1 ⇒w2 . . . ⇒wn c (in short, c0 ⇒w c),
and c ∈ A. Respectively, w is rejected by ND when c ∈ F. The language described by a rule-driven device ND is
represented by L(ND) = {w ∈ S ∗ | c0 ⇒w c, c ∈ A}.

Definition 4 (adaptive rule-driven device). A rule-driven device AD = (ND0,AM), such that ND0 is a device and AM
is an adaptive mechanism, is said to be adaptive when, for all operation steps k ≥ 0 (k is the value of an internal
counter T starting in zero and incremented by one each time a non-null adaptive action is executed), AD follows the
behaviour of an underlying device NDk until the start of an operation step k+1 triggered by a non-null adaptive action,
modifying the current rule set; in short, the execution of a non-null adaptive action in an operation step k ≥ 0 makes
the adaptive device AD evolve from an underlying device NDk to NDk+1.

Definition 5 (operation of an adaptive device). An adaptive device AD starts its operation in configuration c0, with
the initial format defined as AD0 = (C0,AR0, S , c0, A,NA,BA,AA). In step k, an input stimulus move AD to the
next configuration and starts the operation step k + 1 if and only if a non-adaptive rule is executed; thus, being the
device AD in step k, with ADk = (Ck,ARk, S , ck, A,NA,BA,AA), the execution of a non-null adaptive action leads
to ADk+1 = (Ck+1,ARk+1, S , ck+1, A,NA,BA,AA), in which AD = (ND0,AM) is an adaptive device with a starting
underlying device ND0 and an adaptive mechanism AM, NDk is an underlying device of AD in an operation step
k, NRk is the set of non-adaptive rules of NDk, Ck is the set of all possible configurations for ND in an operation
step k, ck ∈ Ck is the starting configuration in an operation step k, S is the set of all possible input stimuli of AD,
A ⊆ C is the subset of accepting configurations (respectively, F = C − A is the subset of rejecting configurations),
BA and AA are sets of adaptive actions (both containing the null action, ε ∈ BA ∩ AA), NA, with ε ∈ NA, is the set
of all output stimuli of AD as side effect of rule applications, ARk is the set of adaptive rules defined as a relation
ARk ⊆ BA×C×S ×C×NA×AA, with AR0 defining the starting behaviour of AD, AR is the set of all possible adaptive
rules for AD, NR is the set of all possible underlying non-adaptive rules of AD, and AM is an adaptive mechanism,
AM ⊆ BA × NR × AA, to be applied in an operation step k for each rule in NRk ⊆ NR.
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Definition 6 (adaptive rules). Adaptive rules ar ∈ ARk are defined as ar = (ba, ci, s, c j, z, aa) indicating that, as
response to an input stimulus s ∈ S , ar initially executes the prior adaptive action ba ∈ BA; the execution of ba is
cancelled if this action removes ar from ARk; otherwise, the underlying non-adaptive rule nr = (ci, s, c j, z), nr ∈ NRk

is applied and, finally, the post adaptive action aa ∈ AA is applied2.

Definition 7 (adaptive function). Adaptive actions may be defined as abstractions named adaptive functions, similar
to function calls in programming languages2. The specification of an adaptive function must include the following
elements: (a) a symbolic name, (b) formal parameters which will refer to values supplied as arguments, (c) variables
which will hold values of applications of elementary adaptive actions of inspection, (d) generators that refer to new
value references on each usage, and (e) the body of the function itself.

Definition 8 (elementary adaptive actions). Three types of elementary adaptive actions are defined in order to perform
tests on the rule set or modify existing rules, namely:

• inspection: the elementary action does not modify the current rule set, but allows inspection on such set and
querying rules that match a certain pattern. It employs the form ?〈pattern〉.
• removal: the elementary action removes rules that match a certain pattern from the current rule set. It employs

the form −〈pattern〉. If no rule matches the pattern, nothing is done.
• insertion: the elementary action adds a rule that match a certain pattern to the rule set. It employs the form
+〈pattern〉. If the rule already exists in the rule set, nothing is done.

Such elementary adaptive actions may be used in the body of an adaptive function, including rule patterns that use
formal parameters, variables and generators available in the function scope.

Adaptive devices offer conveniences on a more compact model representation and better organization, as each
underlying device covers a specific context at a time18. Evolutions reflect device fitting based on history and input
stimuli in order to accommodate covered yet unexpected scenarios19,1.

3. Implementation and instrumentation

When implementing a rule-driven device, it is crucial to design an efficient lookup function, i.e, a function that
queries the rule set for entries matching the current configuration and stimulus and returns the corresponding result.
There is a plethora of data structures for internally storing rules, from hash tables to linked lists and trees; however,
the main issue relies on how efficient is the traverse of such structures.

Definition 9 (lookup score function). Let there be a lookup score function Ω : ND all �→ R, where ND all is the
enumerable set of all rule-driven devices. This function takes a non-adaptive rule-drive device and returns a lookup
score based on the rule set size and the average number of steps need to traverse the corresponding data structure.

For instance, consider a naïve lookup function implementation using an algorithm that requires checking every
element in the rule set NR of ND, regardless of hashing. In this scenario, Ω(ND) = |NR|, i.e, the lookup function will
take |NR| units (the rule set size) on each call. In general, it is highly advisable to use traverse algorithms such that
Ω(ND) � |NR|.

Once the lookup score function is properly defined, it is now possible to calculate the overall score of a rule-driven
device given an input stimuli stream. For a non-adaptive rule-driven device, in which the rule set is immutable during
the entire life cycle, it suffices multiplying the total number of configuration changes by its corresponding lookup
score function in order to obtain the total score.

Definition 10 (input stimuli stream score function of a rule-driven device). Let there be an input stimuli stream score
function ρ : ND all × S ∗ �→ R, where ND all is the enumerable set of all rule-driven devices and S ∗ is the reflexive and
transitive closure of all input stimuli, such that ρ(ND,w) = |{c0 ⇒w cn}| ·Ω(ND) + β, with β being a constant.

For instance, consider two rule-driven devices D1 and D2, such that L(D1) = L(D2). Given an input stimuli stream
w ∈ S ∗, ρ(D1,w) < ρ(D2,w) means that, although both rule-driven devices recognize the very same sentences, D1 has
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a lower overall score and therefore is more efficient regarding implementation (and consequently time wise). Also
observe that the overall score is calculated at runtime, as the device changes configurations over input stimuli.

Adaptive rule-driven devices are more challenging, as the underlying device potentially evolves over time, as well
as operations performed by the adaptive mechanism in order to accomplish such modifications. A close analysis on
the inner workings of elementary adaptive actions is needed, in addition to recalculating the lookup score function on
each operation step.

Definition 11 (sequence of elementary adaptive actions). Adaptive actions may be defined as adaptive functions. The
function body of an adaptive functionA contains a non-empty sequence EA of elementary adaptive actions, such that
EA = 〈e1, e2, . . . en〉 and ei ∈ EA is an elementary adaptive action.

Definition 12 (elementary adaptive action type lookup function). Let there be an elementary adaptive action type
lookup function type : E �→ {inspection, removal, insertion}, where E is the enumerable set of all elementary adaptive
actions. This function takes an elementary adaptive action e ∈ E and returns its corresponding type, namely inspection,
removal or insertion.

Definition 13 (variable set lookup function). Let there be a variable set lookup function vars : E �→ 2V , where E
and V are the enumerable set of all elementary adaptive actions and variables, respectively. This function takes an
elementary adaptive action e ∈ E and returns a subset v ∈ 2V containing all variables (potentially none) defined in the
rule pattern of e. Observe that a variable itself holds a set of elements.

The underlying non-adaptive device is already covered, as it is a matter of successively applying the lookup func-
tion on each operation step (i.e, changes in the internal counter T indicate an underlying device evolution) and ac-
cumulating the partial results. The remainder relates to the execution of adaptive actions, in the form of adaptive
functions.

Definition 14 (adaptive action score function). Let there be an adaptive action score function Ψ : BA ∪ AA �→ R,
where BA and AA are sets of adaptive actions, a ∈ BA ∪ AA is an adaptive action defined as an adaptive function,
Ea = 〈ea,1, ea,2, . . . ea,n〉 is the sequence of elementary adaptive actions of a, k is the current operation step, NDk is the
underlying device, and γ is a constant, such that:

h =



1 if vars(e1) = ∅,
∏

v∈vars(ei)


|v| if |v| > 0,
1 otherwise.

otherwise.
(1)

Ψ(a) =
∑
ei∈Ea



Ω(NDk) + γ if type(ei) = inspection,
Ω(NDk) · h + h if type(ei) = insertion,
Ω(NDk) · h − h if type(ei) = removal.

(2)

This function takes an adaptive action a in the form of an adaptive function and returns a score based on both
underlying device lookup and the corresponding sequence of elementary adaptive actions.

Variables may produce combinatorial results mostly due to their own nature, as they hold entire sets instead of
single elements. Such scenarios are highly undesirable and should be avoided, specially if detected in design time.

Definition 15 (input stimuli stream score function for adaptive rule-driven devices). Let there be an input stimuli
stream score function φ : AD all × S ∗ �→ R, where AD all is the enumerable set of all adaptive rule-driven devices and
S ∗ is the reflexive and transitive closure of all input stimuli, Ck is the set of all possible configurations for ND in an
operation step k, ARk is the set of all possible rules for AD, k is the current operation step, NDk is the underlying
device, and δ is a constant, such that
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Definition 6 (adaptive rules). Adaptive rules ar ∈ ARk are defined as ar = (ba, ci, s, c j, z, aa) indicating that, as
response to an input stimulus s ∈ S , ar initially executes the prior adaptive action ba ∈ BA; the execution of ba is
cancelled if this action removes ar from ARk; otherwise, the underlying non-adaptive rule nr = (ci, s, c j, z), nr ∈ NRk

is applied and, finally, the post adaptive action aa ∈ AA is applied2.

Definition 7 (adaptive function). Adaptive actions may be defined as abstractions named adaptive functions, similar
to function calls in programming languages2. The specification of an adaptive function must include the following
elements: (a) a symbolic name, (b) formal parameters which will refer to values supplied as arguments, (c) variables
which will hold values of applications of elementary adaptive actions of inspection, (d) generators that refer to new
value references on each usage, and (e) the body of the function itself.

Definition 8 (elementary adaptive actions). Three types of elementary adaptive actions are defined in order to perform
tests on the rule set or modify existing rules, namely:

• inspection: the elementary action does not modify the current rule set, but allows inspection on such set and
querying rules that match a certain pattern. It employs the form ?〈pattern〉.
• removal: the elementary action removes rules that match a certain pattern from the current rule set. It employs

the form −〈pattern〉. If no rule matches the pattern, nothing is done.
• insertion: the elementary action adds a rule that match a certain pattern to the rule set. It employs the form
+〈pattern〉. If the rule already exists in the rule set, nothing is done.

Such elementary adaptive actions may be used in the body of an adaptive function, including rule patterns that use
formal parameters, variables and generators available in the function scope.

Adaptive devices offer conveniences on a more compact model representation and better organization, as each
underlying device covers a specific context at a time18. Evolutions reflect device fitting based on history and input
stimuli in order to accommodate covered yet unexpected scenarios19,1.

3. Implementation and instrumentation

When implementing a rule-driven device, it is crucial to design an efficient lookup function, i.e, a function that
queries the rule set for entries matching the current configuration and stimulus and returns the corresponding result.
There is a plethora of data structures for internally storing rules, from hash tables to linked lists and trees; however,
the main issue relies on how efficient is the traverse of such structures.

Definition 9 (lookup score function). Let there be a lookup score function Ω : ND all �→ R, where ND all is the
enumerable set of all rule-driven devices. This function takes a non-adaptive rule-drive device and returns a lookup
score based on the rule set size and the average number of steps need to traverse the corresponding data structure.

For instance, consider a naïve lookup function implementation using an algorithm that requires checking every
element in the rule set NR of ND, regardless of hashing. In this scenario, Ω(ND) = |NR|, i.e, the lookup function will
take |NR| units (the rule set size) on each call. In general, it is highly advisable to use traverse algorithms such that
Ω(ND) � |NR|.

Once the lookup score function is properly defined, it is now possible to calculate the overall score of a rule-driven
device given an input stimuli stream. For a non-adaptive rule-driven device, in which the rule set is immutable during
the entire life cycle, it suffices multiplying the total number of configuration changes by its corresponding lookup
score function in order to obtain the total score.

Definition 10 (input stimuli stream score function of a rule-driven device). Let there be an input stimuli stream score
function ρ : ND all × S ∗ �→ R, where ND all is the enumerable set of all rule-driven devices and S ∗ is the reflexive and
transitive closure of all input stimuli, such that ρ(ND,w) = |{c0 ⇒w cn}| ·Ω(ND) + β, with β being a constant.

For instance, consider two rule-driven devices D1 and D2, such that L(D1) = L(D2). Given an input stimuli stream
w ∈ S ∗, ρ(D1,w) < ρ(D2,w) means that, although both rule-driven devices recognize the very same sentences, D1 has
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a lower overall score and therefore is more efficient regarding implementation (and consequently time wise). Also
observe that the overall score is calculated at runtime, as the device changes configurations over input stimuli.

Adaptive rule-driven devices are more challenging, as the underlying device potentially evolves over time, as well
as operations performed by the adaptive mechanism in order to accomplish such modifications. A close analysis on
the inner workings of elementary adaptive actions is needed, in addition to recalculating the lookup score function on
each operation step.

Definition 11 (sequence of elementary adaptive actions). Adaptive actions may be defined as adaptive functions. The
function body of an adaptive functionA contains a non-empty sequence EA of elementary adaptive actions, such that
EA = 〈e1, e2, . . . en〉 and ei ∈ EA is an elementary adaptive action.

Definition 12 (elementary adaptive action type lookup function). Let there be an elementary adaptive action type
lookup function type : E �→ {inspection, removal, insertion}, where E is the enumerable set of all elementary adaptive
actions. This function takes an elementary adaptive action e ∈ E and returns its corresponding type, namely inspection,
removal or insertion.

Definition 13 (variable set lookup function). Let there be a variable set lookup function vars : E �→ 2V , where E
and V are the enumerable set of all elementary adaptive actions and variables, respectively. This function takes an
elementary adaptive action e ∈ E and returns a subset v ∈ 2V containing all variables (potentially none) defined in the
rule pattern of e. Observe that a variable itself holds a set of elements.

The underlying non-adaptive device is already covered, as it is a matter of successively applying the lookup func-
tion on each operation step (i.e, changes in the internal counter T indicate an underlying device evolution) and ac-
cumulating the partial results. The remainder relates to the execution of adaptive actions, in the form of adaptive
functions.

Definition 14 (adaptive action score function). Let there be an adaptive action score function Ψ : BA ∪ AA �→ R,
where BA and AA are sets of adaptive actions, a ∈ BA ∪ AA is an adaptive action defined as an adaptive function,
Ea = 〈ea,1, ea,2, . . . ea,n〉 is the sequence of elementary adaptive actions of a, k is the current operation step, NDk is the
underlying device, and γ is a constant, such that:

h =



1 if vars(e1) = ∅,
∏

v∈vars(ei)


|v| if |v| > 0,
1 otherwise.

otherwise.
(1)

Ψ(a) =
∑
ei∈Ea



Ω(NDk) + γ if type(ei) = inspection,
Ω(NDk) · h + h if type(ei) = insertion,
Ω(NDk) · h − h if type(ei) = removal.

(2)

This function takes an adaptive action a in the form of an adaptive function and returns a score based on both
underlying device lookup and the corresponding sequence of elementary adaptive actions.

Variables may produce combinatorial results mostly due to their own nature, as they hold entire sets instead of
single elements. Such scenarios are highly undesirable and should be avoided, specially if detected in design time.

Definition 15 (input stimuli stream score function for adaptive rule-driven devices). Let there be an input stimuli
stream score function φ : AD all × S ∗ �→ R, where AD all is the enumerable set of all adaptive rule-driven devices and
S ∗ is the reflexive and transitive closure of all input stimuli, Ck is the set of all possible configurations for ND in an
operation step k, ARk is the set of all possible rules for AD, k is the current operation step, NDk is the underlying
device, and δ is a constant, such that
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h = {(c j,wl, co) | c j ⇒wl co, with c j, co ∈ Ci,wl ∈ S } (3)
b = ba | arp = (bap, cp,1, sp, cp,2, zp, aap) ∈ ARi, ba = bap, cm = cp,1,wn = sp, cr = cp,2 (4)
a = aa | arq = (baq, cq,1, sq, cq,2, zq, aaq) ∈ ARi, aa = aaq, cm = cq,1,wn = sq, cr = cq,2 (5)

φ(AD,w) =
k∑

i=0

|h| ·Ω(NDi) +
∑

(cm,wn,cr)∈h


Ψ(b) if b � ε,
0 otherwise.

+


Ψ(a) if a � ε,
0 otherwise.

+ δ (6)

This function takes an adaptive rule-driven device and a input stimuli stream and returns a score based on the
underlying device lookup and the adaptive mechanism behaviour.

The extended input stream score function now calculates the overall score of an adaptive rule-driven device AD
given an input stimuli stream w. Observe that both elements of AD are covered, namely the underlying non-adaptive
rule-driven device and the adaptive mechanism. Metrics may be collected through a technique known as witness,
which consists of writing unique tokens to a trace stream at runtime12. Such elements are inserted at points that are
targets of predicates (e.g, conditionals).

4. Experiments and discussions

In order to study the behaviour of adaptive devices in a real world scenario, we have modified an open source
library for implementing adaptive automata, making it instrumentation-aware. Three implementations of the classical
recognizer M(L), such that L = {anbncn | n ∈ Z, n � 0}, were proposed, each one using a different strategy for
designing adaptive actions: (a) the original formulation as seen in20, (b) actions defined as parameterless functions,
and (c) actions defined as parametric functions, without elementary adaptive actions of inspection in their bodies.
Results are presented in Figure 1. Note that, as the underlying engine used in the three implementations is the same,
Ω(ADa) = Ω(ADb) = Ω(ADc). Also, due to space constraints, the implementation details were omitted1.
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Fig. 1. Overall score and total of elementary actions for three implementations of the classical recognizer M(L), such that L = {anbncn | n ∈ Z, n �
0}, with n ranged from 1 to 50, each one using a different strategy for designing adaptive actions.

According to Figure 1, the number of elementary adaptive actions, as well as how variables are handled inside
the function scope, may significantly impact on overall performance. Note that a simple reduction on the number

1 The experiments are available in the updated library repository: https://gitub.com/cereda/aa-metrics.
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of elementary adaptive actions offered a performance boost of almost 30% in the long run. However, results are
insufficient to pinpoint improvements and shortcomings when using parametric and parameterless functions; our
hypothesis is that parameters likely spare inspections in the function body, thus improving performance. Further
studies are needed to assess such claim.

Observe that the variable usage was kept to a minimum. It is highly advisable, whenever possible, to avoid inspec-
tions which populate variables with multiple values, as elementary adaptive actions performed on variables holding
more than one value will cause combinatorial results and consequently a severe performance drop.

5. Conclusions

This paper presented instrumentation metrics for adaptive rule-driven devices as a means to obtain performance-
focused implementations. Both elements of the adaptive device were properly covered, namely the underlying non-
adaptive rule-driven device and the adaptive mechanism. Additionally, an open source library for implementing
adaptive automata was modified in order to become instrumentation-aware and reflect the metrics presented in this
paper.

Instrumenting adaptive rule-driven devices allow a better understanding of the inner workings of such devices,
as well as particular characteristics of the languages for which they were originally constructed. The overall score
gathered from instrumentation provide basis for achieving better implementational performance as well as model im-
provements. Besides, the instrumentation metrics presented here may be extended in order to cover several domains.
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∑
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Ψ(b) if b � ε,
0 otherwise.

+


Ψ(a) if a � ε,
0 otherwise.

+ δ (6)

This function takes an adaptive rule-driven device and a input stimuli stream and returns a score based on the
underlying device lookup and the adaptive mechanism behaviour.

The extended input stream score function now calculates the overall score of an adaptive rule-driven device AD
given an input stimuli stream w. Observe that both elements of AD are covered, namely the underlying non-adaptive
rule-driven device and the adaptive mechanism. Metrics may be collected through a technique known as witness,
which consists of writing unique tokens to a trace stream at runtime12. Such elements are inserted at points that are
targets of predicates (e.g, conditionals).

4. Experiments and discussions

In order to study the behaviour of adaptive devices in a real world scenario, we have modified an open source
library for implementing adaptive automata, making it instrumentation-aware. Three implementations of the classical
recognizer M(L), such that L = {anbncn | n ∈ Z, n � 0}, were proposed, each one using a different strategy for
designing adaptive actions: (a) the original formulation as seen in20, (b) actions defined as parameterless functions,
and (c) actions defined as parametric functions, without elementary adaptive actions of inspection in their bodies.
Results are presented in Figure 1. Note that, as the underlying engine used in the three implementations is the same,
Ω(ADa) = Ω(ADb) = Ω(ADc). Also, due to space constraints, the implementation details were omitted1.
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According to Figure 1, the number of elementary adaptive actions, as well as how variables are handled inside
the function scope, may significantly impact on overall performance. Note that a simple reduction on the number

1 The experiments are available in the updated library repository: https://gitub.com/cereda/aa-metrics.
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of elementary adaptive actions offered a performance boost of almost 30% in the long run. However, results are
insufficient to pinpoint improvements and shortcomings when using parametric and parameterless functions; our
hypothesis is that parameters likely spare inspections in the function body, thus improving performance. Further
studies are needed to assess such claim.

Observe that the variable usage was kept to a minimum. It is highly advisable, whenever possible, to avoid inspec-
tions which populate variables with multiple values, as elementary adaptive actions performed on variables holding
more than one value will cause combinatorial results and consequently a severe performance drop.

5. Conclusions

This paper presented instrumentation metrics for adaptive rule-driven devices as a means to obtain performance-
focused implementations. Both elements of the adaptive device were properly covered, namely the underlying non-
adaptive rule-driven device and the adaptive mechanism. Additionally, an open source library for implementing
adaptive automata was modified in order to become instrumentation-aware and reflect the metrics presented in this
paper.

Instrumenting adaptive rule-driven devices allow a better understanding of the inner workings of such devices,
as well as particular characteristics of the languages for which they were originally constructed. The overall score
gathered from instrumentation provide basis for achieving better implementational performance as well as model im-
provements. Besides, the instrumentation metrics presented here may be extended in order to cover several domains.
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