
1

Generation of Gregorian chant
melodies through adaptive techniques

P. R. M. Cereda and J. José Neto

Abstract—A significant subset of formation rules from the
Gregorian theory may be used for an automatic generation of
musical compositions. In this paper, we present a set of adaptive
techniques for generating Gregorian chant melodies given an in
input text in any language, provided that syllabic division rules
are available, and both melody mode and variation.

Keywords:—adaptive devices, musical composition, adaptive
techniques, syntactic transformations

I. INTRODUCTION

G
REGORIAN chant is a form of sung prayer which the
Catholic Church has officially adopted for Western Chris-

tianity of the Roman Rite [1], [2], [3]. The name is a tribute
to Pope Gregory I (also known as Saint Gregory the Great),
whose papacy lasted from 540 to 640. Although the chant ori-
gins predate greatly this epoch (experts estimate the formation
period from the beginning of the Church, in particular, from
the end of the persecutions circa 313), Gregory contributed
with its development and diffusion [1], [3]. The Pope collected,
chose and gave order to the pieces within religious services,
and founded the Schola Cantorum, an advanced school for
church music [2]. According to Auguste Le Guennant, a
French composer and former student, “in Gregorian chant, the
text supplies man with the food necessary for his mind; the
music provides him with the substance which his heart needs.
Thus both contribute to the complete fulfillment of the human
being in his relationship with God” [1].

More recently, the formation rules of Gregorian chant
became well established mostly due to the enormous efforts
of the monks at Saint Peter’s Abbey, a Benedictine monastery
in Solesmes (Sarthe, France). In particular, a decree of the
Sacred Congregation of Rites dated April 11, 1911, authorized
Solesmes to edit the Vatican edition with their findings. Since
then, the abbey became the reference in Gregorian chant [4],
[5].

Given the straightforward structure of a Gregorian chant
melody, and inspired by a seminal work by Basseto on using
adaptive technology for musical composition [6], [7], we aim
at providing adaptive techniques for generating such melodies.
A melody is composed based on an input text in any language
(provided that syllabic division rules are available) and two
parameters, namely mode and variation (detailed later on in
Section II). Two files are generated as result of the musical
composition: a PDF file with the chant score (properly typeset
in Gregorian notation) and a MIDI file with the corresponding
melody as a set of instructions to be executed by an electronic
device (e.g, a sound card) as a means to produce sound.

Authors can be contacted through the following electronic mail addresses:
paulo.cereda@usp.br and jjneto@usp.br.

The remainder of this paper is as follows: Section II presents
an overview of the basic concepts used throughout this paper,
namely adaptive devices and the Gregorian chant theory. In
Section III, we discuss the melody generation itself, addressing
mode selection, neume construction, syllabic division and the
output format through syntactic transformations. In Section IV,
we present an experiment as a means to evaluate the adaptive
techniques, including a melody generation from a famous
Portuguese poem. In Section V, we list a subset of additional
stylistic plainchant guidelines as a means to significantly
enhance the final result. Finally, we present our final remarks
in Section VI.

II. PRELIMINARY CONCEPTS

T
HIS section formally introduces the concept of a general
rule-driven adaptive device, as well as a primer on Gre-

gorian notation and formation rules. It is important to observe
that some details on Gregorian chant theory were deliberately
omitted as they are not in the scope of our paper.

A. Adaptive devices

A general adaptive rule-driven device consists of an under-
lying, potentially non-adaptive, rule-driven device enhanced
with an extension, namely the adaptive mechanism, that allows
modifications on the current rule set over time, based on
history and input stimuli [8], [9]. The following definitions
offer a formal description on how such device functions from
a theoretical perspective.

Definition 1 (rule-driven device). A rule-driven device is
defined as ND = (C,NR, S, c0, A,NA), such that ND is a
rule-driven device, C is the set of all possible configurations,
c0 ∈ C is the initial configuration, S is the set of all possible
input stimuli, ε ∈ S, A ⊆ C is the subset of all accepting
configurations (respectively, F = C − A is the subset of
all rejecting configurations), NA is the set of all possible
output stimuli of ND as a side effect of rule applications,
ε ∈ NA, and NR is the set of rules defining ND as a relation
NR ⊆ C × S × C ×NA.

Definition 2 (rule). A rule r ∈ NR is defined as r =
(ci, s, cj , z), ci, cj ∈ C, s ∈ S and z ∈ NA, indicating that, as
response to a stimulus s, r changes the current configuration
ci to cj , processes s and generates z as output [8]. A rule
r = (ci, s, cj , z) is said to be compatible with the current
configuration c if and only if ci = c and s is either empty or
equals the current input stimulus; in this case, the application
of a rule r moves the device to a configuration cj , denoted by
ci ⇒s cj , and adds z to the output stream.

WTA 2018 – XII Workshop de Tecnologia Adaptativa

2

2

Definition 3 (acceptance of an input stimuli stream by a rule–
driven device). An input stimuli stream w = w1w2 . . . wn,
wk ∈ S − {ε}, k = 1, . . . , n, n ≥ 0, is accepted by a
device ND when c0 ⇒w1 c1 ⇒w2 . . . ⇒wn c (in short,
c0 ⇒w c), and c ∈ A. Respectively, w is rejected by ND when
c ∈ F . The language described by a rule-driven device ND is
represented by L(ND) = {w ∈ S∗ | c0 ⇒w c, c ∈ A}.
Definition 4 (adaptive rule-driven device). A rule-driven de-
vice AD = (ND0,AM), such that ND0 is a device and AM
is an adaptive mechanism, is said to be adaptive when, for all
operation steps k ≥ 0 (k is the value of an internal counter
T starting in zero and incremented by one each time a non-
null adaptive action is executed), AD follows the behavior of
an underlying device NDk until the start of an operation step
k + 1 triggered by a non-null adaptive action, modifying the
current rule set; in short, the execution of a non-null adaptive
action in an operation step k ≥ 0 makes the adaptive device
AD evolve from an underlying device NDk to NDk+1.

Definition 5 (operation of an adaptive device). An
adaptive device AD starts its operation in configura-
tion c0, with the initial format defined as AD0 =
(C0,AR0, S, c0, A,NA,BA,AA). In step k, an input stim-
ulus move AD to the next configuration and starts the
operation step k + 1 if and only if a non-adaptive
rule is executed; thus, being the device AD in step k,
with ADk = (Ck,ARk, S, ck, A,NA,BA,AA), the exe-
cution of a non-null adaptive action leads to ADk+1 =
(Ck+1,ARk+1, S, ck+1, A,NA,BA,AA), in which AD =
(ND0,AM) is an adaptive device with a starting underlying
device ND0 and an adaptive mechanism AM , NDk is an
underlying device of AD in an operation step k, NRk is the
set of non-adaptive rules of NDk, Ck is the set of all possible
configurations for ND in an operation step k, ck ∈ Ck is
the starting configuration in an operation step k, S is the set
of all possible input stimuli of AD , A ⊆ C is the subset of
accepting configurations (respectively, F = C−A is the subset
of rejecting configurations), BA and AA are sets of adaptive
actions (both containing the null action, ε ∈ BA ∩ AA), NA,
with ε ∈ NA, is the set of all output stimuli of AD as side
effect of rule applications, ARk is the set of adaptive rules
defined as a relation ARk ⊆ BA× C × S × C × NA× AA,
with AR0 defining the starting behavior of AD , AR is the
set of all possible adaptive rules for AD , NR is the set of all
possible underlying non-adaptive rules of AD , and AM is an
adaptive mechanism, AM ⊆ BA × NR × AA, to be applied
in an operation step k for each rule in NRk ⊆ NR.

Definition 6 (adaptive rules). Adaptive rules ar ∈ ARk

are defined as ar = (ba, ci, s, cj , z, aa) indicating that, as
response to an input stimulus s ∈ S, ar initially executes the
prior adaptive action ba ∈ BA; the execution of ba is canceled
if this action removes ar from ARk; otherwise, the underlying
non-adaptive rule nr = (ci, s, cj , z), nr ∈ NRk is applied and,
finally, the post adaptive action aa ∈ AA is applied [8].

Definition 7 (adaptive function). Adaptive actions may be
defined as abstractions named adaptive functions, similar to
function calls in programming languages [8]. The specification

of an adaptive function must include the following elements:
(a) a symbolic name, (b) formal parameters which will refer
to values supplied as arguments, (c) variables which will
hold values of applications of elementary adaptive actions of
inspection, (d) generators that refer to new value references
on each usage, and (e) the body of the function itself.

Definition 8 (elementary adaptive actions). Three types of
elementary adaptive actions are defined in order to perform
tests on the rule set or modify existing rules, namely:
• inspection: the elementary action does not modify the

current rule set, but allows inspection on such set and
querying rules that match a certain pattern. It employs
the form ?〈pattern〉.

• removal: the elementary action removes rules that match
a certain pattern from the current rule set. It employs the
form −〈pattern〉. If no rule matches the pattern, nothing
is done.

• insertion: the elementary action adds a rule that match
a certain pattern to the rule set. It employs the form
+〈pattern〉. If the rule already exists in the rule set,
nothing is done.

Such elementary adaptive actions may be used in the body
of an adaptive function, including rule patterns that use formal
parameters, variables and generators available in the function
scope.

According to Cereda and José Neto [10], [11], [12], adap-
tive devices offer conveniences on a more compact model
representation and better organization, as each underlying
device covers a specific context at a time. Evolutions reflect
device fitting based on history and input stimuli in order to
accommodate covered yet unexpected scenarios [13], [14],
[15], [16], [17].

B. Gregorian notation and formation rules

Historically, the Gregorian notation started as neumatic (also
known as chironomic), stemming mainly from the acute and
grave accents borrowed from Latin grammar [5], [1]. It was
very imperfect due to the absence of a proper staff and thus
impossible to indicate the intervals which the voice was to
sing. However, it was a very rich notation in indications of
the expressive interpretation [3].

The notation evolved to an alphabetic representation, bor-
rowed from the Greeks, in which notes were indicated by
letters (from A to G, similar to chord names used in modern
popular music) [3]. Although precise in regard to the intervals,
the notation was inadequate as to the unity of the neumes [1].

Further enhancements included the indication of intervals
(diastematic notation), using the lines which were gradually
increased to the number of four, which today forms the
Gregorian staff [1]. Neumes were transferred to the staff,
such that the primitive accents became points which could be
located with precision on the staff. However, at the expense
of intervallic precision, the rhythmic details disappeared [2],
[3].

As time went by, schools modified the graphic forms by
including complementary signs or letters to them, as a means

WTA 2018 – XII Workshop de Tecnologia Adaptativa

3

3

to determine the length, the brevity or the expressiveness of
certain groups or notes. Eventually, the Gregorian experts (in
particular at Saint Peter’s Abbey, in Solesmes) arrived at a
stabilization of the traditional rhythmic interpretation [1].

The basics of Gregorian notation consist of notes arranged
on a staff of four lines [18], [19]. The name of the notes is
determined by two kinds of clef (C or F), and all notes are
equal in length, unless a supplementary sign is interposed.
A neume is the graphical sign that represents one or more
notes, as well as intervallic and rhythmic indications. The
notation has two fundamental neumes: virga and punctum. The
movement is regular (also known as isochronic), provided that
no supplementary sign is identified (namely, the horizontal epi-
sema and the mora dot). Figure 1 outlines the basic elements
(clefs, fundamental neumes and staff) [19], [1].



C clef



F clef

 

Punctum

 

Virga





























Figure 1. Basic elements of Gregorian notation: clefs (C and F), fundamental
neumes (punctum and virga) and the staff itself (composed of four lines plus
two additional lines to accommodate more notes). The position of the clef in
the staff determines the name of the note.

The punctum and the virga constitute the basis of neume
construction in Gregorian chant. The following list presents a
non-exhaustive description of neumatic combinations:
• For two different sounds, we have podatus and clivis. The

former is an ascending neume composed of a punctum
and a virga, while the latter is quite the opposite, i.e, a de-
scending neume composed of a virga and a punctum [18],
[1], [2].

• For two identical sounds, we have bivirga, which is made
of two virga combined, and distropha, which combines
two punctum [18], [19].

• For three different sounds, we have torculus (composed
of a punctum, a virga, and a punctum), porrectus (the
opposite of torculus, i.e, composed of a virga, a punctum,
and a virga), trivirga (as the name indicates, the neume is
composed of three virga), and tristopha (three punctum
combined) [19], [5].

• For three sounds or more in the same melodic direction,
we have climacus (descending neume made up of one
virga followed by two, three or four diamond shaped
punctum), a scandicus (ascending neumes), and a salicus
(ascending neumes, such that two final notes form a
podatus and the middle note has a vertical episema) [5],
[18].

Observe that certain neumes might end with note heads
significantly smaller than those normally used; such neumes
are named liquescent. The liquescent note or notes lose part
of their clarity and force, but not their length [2], [1].

There are three developed neumes, namely resupinus, fle-
xus and subpunctis. A resupinus neume moves towards a
downward movement and rise again on one extra note in an
upward direction. A flexus neume acts the opposite, i.e, the
neume moves towards an upward movement and is deflected
backward in a downward movement. Finally, a subpunctis
neume moves towards an upward movement and follows a
line of descending diamond-shaped punctum [1], [2].

At last, there are two special neumes: quilisma and oriscus.
The former calls for the expressive lengthening of the note or
two notes which precede it. The latter is an apostropha added
to the last note of a neume [18], [19]. Figure 2 presents the
visual representation of neumatic combinations on a Gregorian
staff.

 

Podatus

 

Clivis

  

Bivirga

  

Distropha

 

Torculus





Porrectus

   

Trivirga

   

Tristopha









Climacus





Scandicus

 



Salicus





Resupinus





Flexus









Subpunctis

 

Quilisma

 

Oriscus
Figure 2. Visual representation of neumatic combinations.

Regarding staff elements, bars are not of measure, but signs
of musical punctuation. Also, the flat ([) is the only chromatic
alteration available and affects exclusively the note B [19], [2].

The Gregorian melody is monodic (no polyphonic and
harmonic elements and combinations), diatonic and modal
(constructed on melodic scales which differ widely from
another), besides of having no leading tone [1], [19]. Four
modes are available and may be distinguished from inspecting
the lowest note, namely protus (starts from D), deuterus (starts
from E), tritus (starts from F), and tetrardus (starts from
G). There are also two subdivisions on each mode, namely
authentic and plagal. Each mode dictates a different message
to the hearer [18], [1], [4].

III. MELODY GENERATION

C
ONSIDER a Unicode text written in any language (pro-
vided that syllabic division rules are available) and both

Gregorian mode and variation (authentic or plagal) as input
of our generator. The following subsections provide details on
how a melody is generated through adaptive techniques.

WTA 2018 – XII Workshop de Tecnologia Adaptativa

4

4

A. Mode selection

Notes in the Gregorian staff will be represented by positive
integers, from 1 to 13. This approach aims at maintaining an
order relation (which is transitive and anti-symmetric) such
that, given two notes a and b, a ≥ b means that a is possibly
in a higher position than b in the staff (hence a higher pitch).
Figure 3 presents an annotated Gregorian staff.



1


2


3



4



5



6



7



8



9



10



11



12



13



Figure 3. Annotated Gregorian staff, in which notes are represented by
positive integers. Given the clef in the third line, the note C is found in
indices 1 and 8 in the staff.

The annotated Gregorian staff from Figure 3 is represented
by an adaptive automaton N , introduced in Figure 4. Observe
that states from 1 to 13 represent the corresponding notes in the
staff, while the initial state indicates that no note was selected
so far. At first, all notes are unreachable from the initial
state; the adaptive function A (Algorithm 1) is responsible for
adding transitions to valid notes based on the selected mode.

0N

1 2 3

4

5

6

7

8910

11

12

13

ε, ·A(a)

Figure 4. Adaptive automaton N representing notes from the annotated
Gregorian staff. Adaptive function A is presented in Algorithm 1.

Algorithm 1 Adaptive function A
adaptive function A(a)
−(0, ε)→ 0, ·A(a)
+(0, ε)→ {i, ·ψrand(i) | a ≤ i ≤ (a+ 7)}

end of adaptive function

Observe that A (Algorithm 1) is a parametric function.
A Gregorian mode selects a range of notes from the staff,
so this particular adaptive function restricts which states are

reachable from the start by taking a mode shift as param-
eter. Based on the existing modes and variations briefly
described in Subsection II-B, let there be two sets M and
V , such that M = {protus, deuterus, tritus, tetrardus} and
V = {authentic, plagal}. Possible combinations are given by
M × V ; these entries are presented in Table I, including their
corresponding shifts.

Table I
SHIFTS BASED ON THE COMBINATION OF MODE AND VARIATION FROM

GREGORIAN MELODY DESCRIBED IN SUBSECTION II-B.

Variations

Modes Authentic Plagal

Protus 2 6
Deuterus 3 1

Tritus 4 1
Tetrardus 5 2

For instance, consider an authentic protus mode for a
Gregorian melody (with shift 2 according to Table I). The new
configuration of the adaptive automaton N (Figure 4) after
the execution of A(a), with a = 2, is presented in Figure 5.
Observe that only the protus note range is reachable from the
initial state.

0N

1 2 3

4

5

6

7

8910

11

12

13

ε
ε

ε

ε

ε

ε
εεε

Figure 5. New configuration of the adaptive automaton N (Figure 4) after
the execution of A(a), with a = 2, representing the authentic protus mode.
Transitions have omitted the associated adaptive function ψrand due to space
constraints.

The newly added transitions (as seen in Figure 5) are
represented by dashed lines for a reason: they are bound to
probabilities following a uniform distribution. Each note from
the mode range is equally eligible for neume construction. As
the Gregorian melody has no leading tone, notes share the
same probability.

B. Neume construction

Once the adaptive automaton N is shaped to reflect the
selected mode, notes are eligible for neume construction.

WTA 2018 – XII Workshop de Tecnologia Adaptativa

5

5

Observe that, for each new transition added by A(a), there is
an adaptive function ψrand(i) (with i being a reference to the
target state) associated to it. As the subscript indicates, ψrand

is actually a reference to another adaptive function selected at
random, such that ψrand = ψ | ψ ∈ {punctum/virga, podatus,
clivis, scandicus/salicus, climacus, torculus, porrectus}. These
adaptive functions effectively construct the neumes based on
the formation rules described in Subsection II-B and use the
chosen note as pivot. Table II indicates the adaptive functions
available for neume construction and their corresponding al-
gorithms.

Table II
ADAPTIVE FUNCTIONS AVAILABLE FOR NEUME CONSTRUCTION AND

THEIR CORRESPONDING ALGORITHMS.

Adaptive function Algorithm

punctum/virga 2
podatus 3
clivis 4
scandicus/salicus 5
climacus 6
torculus 7
porrectus 8

Algorithm 2 Adaptive function punctum/virga
adaptive function punctum/virga(a)
−({i | 1 ≤ i ≤ 13}, ε)→ {i | 1 ≤ i ≤ 13}

end of adaptive function

Algorithm 3 Adaptive function podatus
adaptive function podatus(a)

variables: ?x
−({i | 1 ≤ i ≤ 13}, ε)→ {i | 1 ≤ i ≤ 13}
?(0, ε)→?x
+(a, ε)→ i | i ∈?x, i > a

end of adaptive function

Algorithm 4 Adaptive function clivis
adaptive function clivis(a)
−({i | 1 ≤ i ≤ 13}, ε)→ {i | 1 ≤ i ≤ 13}
?(0, ε)→?x
+(a, ε)→ i | i ∈?x, i < a

end of adaptive function

After a closer inspection on Table II, it is clear that not
all formation rules from Subsection II-B are covered through
adaptive rules. This is a deliberate choice, since the remainder
is quite straightforward (e.g, a bivirga is simply two virga
combined, with the same note). Also, observe that previous
neume construction schemes are cleaned up before a new
one takes place (indicated by the first line of each adaptive
function).

For instance, consider an example of a climacus construc-
tion within an authentic protus mode (Figure 5). Given 9 as
the chosen note (namely, D), the execution of the adaptive

Algorithm 5 Adaptive function scandicus/salicus
adaptive function scandicus/salicus(a)
−({i | 1 ≤ i ≤ 13}, ε)→ {i | 1 ≤ i ≤ 13}
?(0, ε)→?x
w ← (i, j) | (i, j) ∈?x×?x, a < i < j
+(a, ε)→ i | (i, α) ∈ w
+(i | (i, α) ∈ w, ε)→ i | (α, i) ∈ w

end of adaptive function

Algorithm 6 Adaptive function climacus
adaptive function climacus(a)
−({i | 1 ≤ i ≤ 13}, ε)→ {i | 1 ≤ i ≤ 13}
?(0, ε)→?x
w ← (i, j) | (i, j) ∈?x×?x, i < j < a
+(a, ε)→ i | (α, i) ∈ w
+(i | (i, α) ∈ w, ε)→ i | (i, α) ∈ w

end of adaptive function

function climacus(9) might yield (amongst several others) the
new configuration as seen in Figure 6.

According to Figure 6, the generated climatus neume is
composed of notes 9, 7 and 4 (D, B and F, respectively), in
that order, for an authentic protus mode. Other combinations
of notes are possible. As the neume construction process is
fully covered, it suffices to inspect the provided text in order
to discover how many neumes are needed to be constructed,
so the entire phrasal structure is properly addressed.

C. Syllabic division

Given the Unicode text provided as input, we need to break
it into parts. The first step is to split the text using empty
spaces as separators and thus obtain a list of words. From this
list, every word is then divided into syllables. Figure 7 outlines
the text manipulation process. Note that the module requires
a proper language definition containing the syllabic division

Algorithm 7 Adaptive function torculus
adaptive function torculus(a)
−({i | 1 ≤ i ≤ 13}, ε)→ {i | 1 ≤ i ≤ 13}
?(0, ε)→?x
w ← i | i ∈?x, i > a
+(a, ε)→ w
+(w, ε)→ a

end of adaptive function

Algorithm 8 Adaptive function porrectus
adaptive function porrectus(a)
−({i | 1 ≤ i ≤ 13}, ε)→ {i | 1 ≤ i ≤ 13}
?(0, ε)→?x
w ← i | i ∈?x, i > a
y ← i | i ∈?x, i < a
+(a, ε)→ w
+(w, ε)→ y

end of adaptive function

WTA 2018 – XII Workshop de Tecnologia Adaptativa

6

6

0N

1 2 3

4

5

6

7

8910

11

12

13

ε
ε

ε

ε

ε

ε
εεε

ε

ε

Figure 6. A possible new configuration after the execution of the adaptive
function climacus(9) within an authentic protus mode (Figure 5).

rules (based on Hunspell, a spell checker and morphological
analyzer designed for languages with rich morphology and
complex word compounding and character encoding) in order
to properly process each word.

For instance, consider the syllabic division of the word
constitutional, as seen in Figure 8. The module requires a
word and the associated language definition file (in this case,
English). As a result, five syllables are produced.

The total of neumes is calculated upon the sum of all
syllables of all words from the list. Formally, let there be
D : Σ∗ 7→ Z a function that maps words into their number
of syllables, and L the list of all words extracted from the
input text, the total of neumes TN is presented in Equation 1.

TN =

|L|∑

l∈L
C(l) (1)

In order to accommodate all syllables from all words in the
text, we need to generate TN neumes using the construction
scheme detailed in Subsection III-B. Then each neume is
associated with a syllable and included in a syntactic structure
(namely a tree) for later processing.

D. Output

Neumes and their associated syllables are stored in a tree
structure, as it gives an expressive representation of all el-
ements. Figure 9 presents an example of a tree containing
four neumes and the corresponding syllables for the word
irregular (using English syllabic division rules).

In order to generate the output files (PDF and MIDI), we
will apply syntactic transformations on this tree and shape
the elements according to each format. Figure 10 outlines the
transformation process.

Two independent syntactic transformations are applied to
the tree of neumes and syllables in order to obtain the output
files seen in Figure 10. They are described as follows:

Text

Word splitter

w3 . . .w2w1 wn

List of words

Word

Syllabic division module
Language
definition

s3 . . .s2s1 sn

List of syllables

Figure 7. Text manipulation process overview. Note that the module requires
a proper language definition containing the syllabic division rules in order to
properly process each word.

constitutional

Syllabic division module
English

tusticon tion al

Figure 8. Syllabic division module.

NEUMELIST

NEUME

PUNCTUM

ir- 4

NEUME

SCANDICUS

reg- 6 7 8

NEUME

PUNCTUM

u- 5

NEUME

PODATUS

lar 6 8

Figure 9. Example of a tree structure containing four neumes and the cor-
responding syllables for the English word irregular. Values are represented
in the leaves.

WTA 2018 – XII Workshop de Tecnologia Adaptativa

7

7

Tree

Syntactic transformations

MIDIPDF

Figure 10. Outline of syntactic transformations applied to the tree, resulting
in both PDF and MIDI output formats.

• The PDF transformation takes the tree and reduces it to
an intermediate format known as GABC, a simple text-
based notation that enables the description of Gregorian
chant scores. Once the transformation is done, the file
is processed by an external program and a PDF file
containing the typeset chant melody score is generated.

• The MIDI transformation takes the tree, removes all
textual references (namely, syllables) and reduces it to
an intermediate format known as LY, another simple text-
based notation for music input. Once the transformation
is done, we deliberately suppress the score engraving and
explicitly declare a MIDI generation. Then the file is
processed by an external program and a MIDI file with
the corresponding chant melody as a set of instructions
to be executed by an electronic device is generated.

After the generation of both PDF and MIDI files, the inter-
mediate files are removed since they are no longer necessary.
Optionally, the generated tree may remain available afterwards
for subsequent use and application of external syntactic trans-
formations (through library mode and API calls).

IV. EXPERIMENTS

I
N order to evaluate the adaptive techniques presented here,
we wrote a study case of a Gregorian chant generation.

For this particular experiment, we chose Canto I (Figure 11)
from the Portuguese poem Os Lusíadas, by Luís Vaz de
Camões [20]. The poem is often regarded as the most im-
portant work of Portuguese literature.

Consider the program interface illustrated in Figure 12. The
program presents us with a straightforward interface in which
we simply type the input text and select both mode and text
language. Observe that the program automatically detected
installed Hunspell dictionaries and listed them (using IETF
language tag names) in the selection box.

We typed the contents of Canto I (as seen in Figure 11),
as a single paragraph, in the input area, selected the authentic
protus mode (displayed as an order pair (m, v) ∈ M × V ,
previously defined in Subsection III-A) and the European

Os Lusíadas
Luís de Camões

Canto I

As armas e os barões assinalados,
Que da ocidental praia Lusitana,
Por mares nunca de antes navegados,
Passaram ainda além da Taprobana,
Em perigos e guerras esforçados,
Mais do que prometia a força humana,
E entre gente remota edificaram
Novo Reino, que tanto sublimaram.

1

Figure 11. Canto I from the Portuguese poem Os Lusíadas, by Luís Vaz de
Camões, to be used as input text of our experiment.

Portuguese language definition (identified as the pt_PT tag),
clicked the “Generate chant” button and then waited a few
moments while the neume construction, syllabic division
and syntactic transformations took place. The resulting chant
melody score is presented in Figure 13.

As result of the melody generation, both PDF and MIDI
files were successfully obtained from the program interface.
Observe that the provided text was successfully broken into
words and then into syllabic elements, which were associated
to neumes and inserted into a tree structure. Then syntactic
transformations were applied to the tree, in which the expected
output files derived.

V. ADDITIONAL ENHANCEMENTS

T
HE current rule set might be extended in order to include
additional stylistic plainchant guidelines as a means to

significantly enhance the final result. We list a subset of such
guidelines as follows.
• Large intervals between adjacent notes should not be

frequent, unless there is a new phrase to be composed.
The final repose and cadence of the melody should be
established on a sound selected as and orientation point
at a lower end of a partial scale of sounds [1].

• Breaks are tied to punctuation symbols such that the
rhythm flows according to the sentence and not vice
versa. In Gregorian chant, bars are not for measure; they
are signs of musical punctuation, in which certain breaks
call for breathing, to a greater or lesser extent according
to the case at hand [2]:

– Quarter bar: generally indicates the end of an incise
and determines a slight respiration.

– Half bar: indicates the end of a member and calls for
and obligatory breath.

– Full bar: indicates the end of of a phrase which is
expressed by a slight broadening of the movement.

• Sentences are broken into three phrasal structures
(namely beginning, middle and end) such that the melody

WTA 2018 – XII Workshop de Tecnologia Adaptativa

8

8

Figure 12. Gregorian chant melody generator interface. It is a simple interface in which we simply type the input text and select both mode and text language.

A
i



s



ar-




mas



e





os





ba-





rões




a



ssi-



na-









la



dos,



que


da







o



cide



ntal



praia




Lu-



si-







ta-


na,








por



ma-



res



nu



nca



de



an-



tes




na-



ve-



ga-





dos,



pas-








sa-



ram



ai



nda



além





da









Ta



pro-



ba-



na,



em



pe-



ri-



gos






e



gue


rras







es-



for-





ça



dos,



mais



do



que



pro-


me-


tia







a


fo



rça


hu



ma



na,



e



e



ntre




ge



nte





re



mo-



ta



edi-







fi-







ca-



ram


No



vo



Rei



no,



que



ta



nto



su


bli-









ma-


ram.



 

1

Figure 13. Resulting chant melody score from Canto I (Figure 11).

starts from thesis (a Greek word for repose), ascends into
arsis (a Greek word for impulse) and returns to its initial
state. The movement is neither the arsis or thesis alone,
but the two in dependence upon each other, such that the
thesis is the natural result of the arsis [18], [1].

• Regarding the underlying language, the tonic syllables
are usually emphasized. However, the tonic emphasis can
weakened or eliminated based on the surrounding phrasal
structure. It is important to note that each language has
its own pronunciation rules (e.g, the tonic accent of Latin
polysyllabic words is never on the final syllable) [1].

From a stylistic point of view, these guidelines aim at pro-
viding a more pleasant experience when generating Gregorian
chant melodies, such that the final result is comparable to real
compositions in both melodic and rhythmic aspects.

VI. FINAL REMARKS

T
HIS paper presented a set of adaptive techniques for
generating Gregorian chant melodies given an input text

in any language (provided that syllabic division rules are
available) and the melody mode and variation. We were able
to map a meaningful subset of formation rules from the
Gregorian theory into adaptive functions and the results were
preliminary yet quite significant.

However, certain context dependencies were minimized for
the sake of clarity and simplicity. The Gregorian theory is
in itself extensive and intricate. Further studies are needed
in order to improve the representation of formation rules and
dependencies in both musical and textual elements.

The use of adaptive techniques provides great reduction on
the rule set, as it retains only the relevant elements according to
the current context. Such feature confers a compact model rep-
resentation, as context changes are applied only when needed.
Additionally, such techniques may be extended towards other
genres in musical composition.

WTA 2018 – XII Workshop de Tecnologia Adaptativa

9

9

REFERENCES

[1] J. R. Carroll, An applied course in Gregorian chant, ser. The Church
Musicians Bookshelf. Ohio, USA: Gregorian Institute of America,
1956, no. 2.

[2] D. Johner, A new school of Gregorian chant, 3rd ed. Frederick Pustet
& Co., 1925.

[3] D. Hiley, Western plainchant: a handbook. Oxford, UK: Claredon
Press, 1993.

[4] D. Saulnier, Gregorian chant: a guide. Solesmes, France: Abbaye
Saint-Pierre, 2003.

[5] J. Schrembs, A. Marie, and G. Huegle, The Gregorian Chant Manual
of the Catholic Music Hour. Silver, Burdett and Company.

[6] B. A. Basseto and J. José Neto, “A stochastic musical composer based
on adaptive algorithms,” in Proceedings of the VI Brazilian Symposium
on Computer Music, Rio de Janeiro, Brazil, 1999.

[7] B. A. Basseto, “Um sistema de composição musical automatizada,
baseado em gramáticas sensíveis ao contexto, implementado com for-
malismos adaptativos,” Tese de mestrado, Escola Politécnica, Universi-
dade de São Paulo, São Paulo, Brazil, 2000.

[8] J. José Neto, “Adaptive rule-driven devices: general formulation and case
study,” in International Conference on Implementation and Application
of Automata, 2001.

[9] J. José Neto, “Um levantamento da evolução da adaptatividade e da
tecnologia adaptativa,” IEEE Latin America Transactions, vol. 5, pp.
496–505, 2007.

[10] P. R. M. Cereda and J. José Neto, “AA4J: uma biblioteca para imple-
mentação de autômatos adaptativos,” in Memórias do X Workshop de
Tecnologia Adaptativa – WTA 2016, 2016, pp. 16–26.

[11] ——, “Towards performance-focused implementations of adaptive de-
vices,” Procedia Computer Science, vol. 109, pp. 1164–1169, 2017.

[12] ——, “A middleware architecture for adaptive devices,” Procedia Com-
puter Science, vol. 109, pp. 1158–1163, 2017.

[13] J. José Neto, “Adaptive automata for context-sensitive languages,”
SIGPLAN Notices, vol. 29, no. 9, pp. 115–124, set 1994.

[14] ——, “Contribuições à metodologia de construção de compiladores,”
Tese de livre docência, Escola Politécnica da Universidade de São Paulo,
São Paulo, 1993.

[15] P. R. M. Cereda and J. José Neto, “Utilizando linguagens de progra-
mação orientadas a objetos para codificar programas adaptativos,” in
Memórias do IX Workshop de Tecnologia Adaptativa – WTA 2015, 2015,
pp. 2–9.

[16] R. L. Stange, P. R. M. Cereda, and J. José Neto, “Agentes adaptativos
reativos: formalização e estudo de caso,” in Memórias do XI Workshop
de Tecnologia Adaptativa – WTA 2017, São Paulo, 2017, pp. 63–71.

[17] R. L. Stange and J. José Neto, “Learning decision rules using adaptive
technologies: a hybrid approach based on sequential covering,” Procedia
Computer Science, vol. 109, pp. 1188–1193, 2017.

[18] M. Demetria, Basic Gregorian chant and sight reading: movable Do
edition, ser. The Church Musicians Bookshelf. Ohio, USA: Gregorian
Institute of America, 1960, no. 4.

[19] C. Spence, Chants of the Church: selected Gregorian chants. Ohio,
USA: Gregorian Institute of America, 1952, edited and compiled by the
Monks of Solesmes.

[20] L. V. Camões, Os Lusíadas. Companhia Editora do Minho, 1940,
edição artística comemorativa do terceiro centenário da restauração da
independência de Portugal.

Paulo Roberto Massa Cereda é graduado em Ciên-
cia da Computação pelo Centro Universitário Central
Paulista (2005) e mestre em Ciência da Computação
pela Universidade Federal de São Carlos (2008).
Atualmente, é doutorando do Programa de Pós-
Graduação em Engenharia de Computação do De-
partamento de Engenharia de Computação e Siste-
mas Digitais da Escola Politécnica da Universidade
de São Paulo, atuando como aluno pesquisador no
Laboratório de Linguagens e Técnicas Adaptativas
do PCS. Tem experiência na área de Ciência da

Computação, com ênfase em Teoria da Computação, atuando principalmente
nos seguintes temas: tecnologia adaptativa, autômatos adaptativos, dispositivos
adaptativos, linguagens de programação e construção de compiladores.

João José Neto é graduado em Engenharia de
Eletricidade (1971), mestre em Engenharia Elétrica
(1975), doutor em Engenharia Elétrica (1980) e
livre-docente (1993) pela Escola Politécnica da Uni-
versidade de São Paulo. Atualmente, é professor
associado da Escola Politécnica da Universidade
de São Paulo e coordena o LTA – Laboratório de
Linguagens e Técnicas Adaptativas do PCS – Depar-
tamento de Engenharia de Computação e Sistemas
Digitais da EPUSP. Tem experiência na área de Ci-
ência da Computação, com ênfase nos Fundamentos

da Engenharia da Computação, atuando principalmente nos seguintes temas:
dispositivos adaptativos, tecnologia adaptativa, autômatos adaptativos, e em
suas aplicações à Engenharia de Computação, particularmente em sistemas
de tomada de decisão adaptativa, análise e processamento de linguagens na-
turais, construção de compiladores, robótica, ensino assistido por computador,
modelagem de sistemas inteligentes, processos de aprendizagem automática
e inferências baseadas em tecnologia adaptativa.

WTA 2018 – XII Workshop de Tecnologia Adaptativa

10

