
Organizing Definitions and Formalisms
for Dynamic Software Architectures

Technical Report 2004-477

Jeremy S. Bradbury
Software Technology Laboratory,

School of Computing, Queen’s University
Kingston, Ontario, Canada
bradbury@cs.queensu.ca

March 31, 2004

Abstract

Dynamic architectural change is defined as the addition and removal of components and connectors.
Dynamic software architectures are those architectures that modify their architecture and enact the mod-
ifications during the system’s execution. This behavior is most commonly known as run-time evolution
or dynamism. As dynamic software architecture use becomes more widespread, it is important to gain
a better understanding of this type of software evolutionary change and be able to classify formalisms,
approaches and tools. Current evaluations in the areas of software architecture and evolutionary change
have made strides in classification but are not sufficient to evaluate dynamic software architectures. A
dedicated comparison of dynamic software architectures and architectural formalisms is necessary in or-
der to gain a deeper understanding of run-time evolution. In this paper we present a set of classification
criteria for the comparison of dynamic software architectures based on: change type, change process,
and change infrastructure. We demonstrate the use of the criteria by classifying three types of dynamic
software architectural change. In addition we survey 14 current approaches to the formal specification of
dynamic software architectures based on graphs, process algebras, logic, and other formalisms. We then
classify these approaches using the proposed criteria as well.

Contents

1 Introduction 1

2 Dynamic Software Architectures 2

3 Organizing Dynamic Software Architectures 3
3.1 Proposed Classification Criteria .4

3.1.1 Change Type .4
3.1.2 Change Process .5
3.1.3 The Infrastructure for Change .6

4 Evaluation of Dynamic Software Architecture Definitions 7

5 Formal Specification Techniques for Software Architecture 7

6 Graph-Based Formalisms 9
6.1 Le Métayer Approach .10
6.2 Hirsh et al. Approach .12
6.3 Taentzer et al. Approach .14
6.4 COMMUNITY .15
6.5 Chemical Abstract Machine (CHAM) .16

7 Process Algebra Formalisms 17
7.1 Dynamic Wright .17
7.2 Darwin .20
7.3 LEDA .20
7.4 PiLar .22

8 Logic-Based Formalisms 24
8.1 Generic Reconfiguration Language (Gerel) .24
8.2 Aguirre-Maibaum Approach .26
8.3 ZCL Framework .28

9 Other Formalisms 29
9.1 C2SADEL .29
9.2 RAPIDE .32

10 Evaluation of Dynamic Software Architecture Specifications 34
10.1 Change Type .34
10.2 Change Process .35
10.3 The Infrastructure for Change .37

11 Conclusions and Open Problems 38

12 Acknowledgements 39

A A Proposed Evolution Taxonomy 46

ii

1 Introduction

Most research areas such as dynamic software architectures focus on the development of new approaches,
new tools and new methods to advance the state-of-the-art. Although this is beneficial, there is also benefit
in comparing existing approaches and assessing the progress that has been made. The understanding and
perspective gained from such an evaluation not only highlights where we have been but also where we need
to go.

Taxonomies provide us with a means to evaluate the work in a given area using a set of well-defined
criteria. Currently there are no taxonomies or methods of organization that apply specifically to dynamic
software architectures. Dynamic software architectures are software architectures that evolve at run-time,
thus drawing expertise from both the software architecture and evolutionary change communities. In an
effort to organize dynamic architectures we first consider existing taxonomies and classifications in the areas
of architecture and evolutionary change.

Software Architecture. In the area of software architecture we considered an organizational framework
for architectural formalisms, several surveys of architectural specifications, and an architectural ontology.
In [SG95], Shaw and Garlan propose a two-dimensional organizational framework for formal approaches to
software architecture. One dimension of the framework is genericity of the formalism. Genericity is divided
into three categories: architectural instances, architectural styles, and architecture in general. The other di-
mension is the specification power of the formalism, divided into seven basic levels: capture, construction,
composition, selection, verification, analysis, and automation. Also, in recent years several papers have sur-
veyed Architecture Description Languages (ADLs) and provided broad comparisons [Cle96, MT00]. The
survey in [Cle96] compared ADLs on attributes related to scope of language, capturing design history views,
support for variability, expressive power, support for architecture creation, tool maturity, and others. The
survey in [MT00] compared ADLs in terms of their ability to model components, connectors and config-
uration as well as tool support for such things as analysis and refinement. In addition to organizational
frameworks there has also been work on developing a software architecture ontology composed of architec-
tural entities [GMW97]. The ontology consists of components, connectors, systems (configurations), ports
(component interfaces), roles (connector interfaces), representations (hierarchical architecture layers), and
representation maps (associations between layers).

Unfortunately, upon review the classification and ontology work in the area of software architecture is
too general for our purposes. That is, it does not allow for a meaningful comparison of dynamic software
architectures because it contains very little, if any, criteria related to evolutionary change. In fact, only the
survey in [MT00] even considers run-time evolution in its evaluation.

Software Evolutionary Change. In the area of software evolutionary change we considered taxonomies
based on the purpose of change [LS80, CHK+01] and the mechanisms required for change [BMZ+04].
The work in [LS80] distinguishes between software maintenance that is perfective, adaptive, and correc-
tive. In [CHK+01] the purpose of maintenance and evolution is further divided into 12 distinct categories.
In [BMZ+04], Buckley et al. develop a proposed taxonomy for change from a mechanisms perspective.
Their taxonomy does not concentrate onwhya change occurs but instead focuses on thehow, what, when,
andwhereof an evolutionary change.

Unfortunately, this work has a problem similar to that of the software architecture work mentioned earlier.
The taxonomies in the area of software evolutionary change are too general and lack important information
regarding architectural issues that are relevant in dynamic software architectures.

To address the need for a more focused comparison we propose a set of criteria based on the information
we wish to understand about dynamic software architectures. Our goal is to evaluate dynamic architectures
by answering three fundamental questions related to dynamic architectural change:

1. What type of change is supported?

1

2. What kind of process implements the change?

3. What infrastructure is available to support the change process?

In the next section (Section 2) we will discuss dynamic architectures in more detail and explain why a
classification of dynamic software architectures is needed. We will then discuss our classification criteria
(Section 3). We then evaluate the approach by classifying three types of dynamic architectural change
(Section 4). After presenting our approach and demonstrating its use on different types of change we will
shift focus to dynamic software architectural formalisms. In Section 5 we will discuss the use of formal
specification techniques in the context of current practise. We will then survey 14 formal approaches to
specifying dynamic software architectures based on graphs (Section 6), process algebras (Section 7), logic
(Section 8), and other formalisms (Section 9). We will also classify each of these formal specifications using
our approach (Section 10). Finally, a conclusion and open problems are given in Section 11.

2 Dynamic Software Architectures

Software architectures can be viewed using a common framework consisting of components and connectors.
Components typically encapsulate information or functionality while connectors coordinate the communica-
tion between components. More specifically, software architectures describe the decomposition of a system
into components, the interconnection of the components, and component interaction [SNH95].

Architectural modifications in software can occur at design time, pre-execution time, or run-time [Ore96].
Dynamic software architectures are those that modify their architecture and enact the modifications during
the system’s execution [MT00]. This behavior is most commonly known as run-time evolution or dynamism.
Dynamic software architectures have several practical applications [OMT98]. For instance, in public infor-
mation systems with high availability and in mission- and safety-critical systems the implementation of
architectural change at run-time can decrease the cost of the change and remove the risk associated with
taking the system off-line. Moreover, in many systems the use of dynamism can provide the end-user with
the ability to modify the set of features available in the system.

Although dynamism has practical applications and has been researched by academics, there has been a
lack of use of dynamism by software practitioners. This lack is particularly noticeable outside of the area
of safety-critical and high availability software. In [Szy03], Szyperski addresses the lack of practical uses
of dynamism in a discussion of the motivations for developing component-based systems. He believes the
primary reasons dynamic components are not used is that systems developed with such components are
“challenging in terms of correctness, robustness, and efficiency” [Szy03].

To support the development of correct and robust dynamic software architectures, many researchers
have focused on the development of tools, approaches, and formalisms that provide guarantees regarding
the correctness of dynamic architecture systems. A variety of different definitions of dynamic architectural
change have been used in these approaches and given in the literature. The different definitions of dynamic
architectural change help to demonstrate the need for a taxonomy. Below we list recent and widely cited
definitions of dynamic architectural change. The list shows the high degree of variability with which dynamic
architectural change is perceived within the research community.

Programmed dynamism[End94]. The change is triggered by the system and changes are defined prior
to run-time.

Ad-hoc dynamism [End94]. Often initiated by the user as part of a software maintenance task, ad-hoc
changes are defined at run-time and are not known at design-time.

Constructible dynamism [And00]. Constructible dynamism is a kind of ad-hoc change because it is ini-
tiated by an external event from, for example, a user or an external monitoring tool. A description language

2

is used to describe the initial system configuration. A modification language is used to describe architec-
tural changes. Finally, a dynamic updating system supports the architectural change via an architectural
framework or middle-ware.

Adaptive dynamism [And00]. In a system that supports adaptive dynamism, the initialization and
selection are done in the architectural framework or middle-ware (along with the implementation). Adaptive
dynamism starts with a predefined set of configurations from the development stage of the software. The run-
time dynamic changes are initiated by predefined events and then the system selects one of the predefined
configurations and implements it. Hence, adaptive dynamism is a kind of programmed change.

Intelligent dynamism [And00]. Intelligent dynamism is also a kind of programmed change, similar to
adaptive dynamism without the restriction of a predefined set of configurations. In intelligent dynamism
possible configurations are dynamically constructed and the architecture assesses the quality of the configu-
rations and implements the appropriate choice.

Constrained run-time dynamism [Ore96]. In this form of dynamism, a change can occur only after
pre-defined constraints are satisfied. For example, constraints can be placed on the architectural topology
and the program state.

Unconstrained run-time dynamism [Ore96]. No constraints are placed on the program state or the
topology prior to running the system.

Transient connectors[WF98]. Dynamic reconfiguration of transient connectors is possible because of
a boolean interaction condition which states the role of the connector and when the connector should be
applied [FWM99]. The addition and removal of transient connectors is based on the status of the interaction
condition.

Self-organising architectures[GMK02]. These are architectures that use no centralized management
and allow components to connect or remove themselves from an architecture. A self-organising system
is specified as a set of constraints on component composition, not in terms of a description of component
composition and behavior.

Self-repairing systems[SG02]. Systems that have the ability to self repair are similar to self-organising
architectures in that changes are initiated and assessed internally. Self-repairing system differ from self-
organising in that they do not require distributed management. A self-repairing system has a control-loop
of three primary activities: monitoring, interpretation, and reconfiguration. First, the run-time behavior is
monitored to determine the need for change. Second, the monitored behavior is interpreted in the context
of an architectural model. Third, reconfiguration is conducted once run-time analysis of the architectural
model is complete. An example of run-time analysis would be to check if the model conforms to a given
architectural style.

Self-adaptive software[OGT+99]. Systems that can adapt to their environments by enacting run-time
change. These system monitor observable behavior that may be external or internal to the system and in
response enact change at the architectural level.

All of the definitions described above divide architectural change into the same four steps: initiation of
change, selection of an architectural transformation, implementation of a reconfiguration, and assessment of
the architecture after reconfiguration [And00]. Many of the definitions define different types of dynamism
based on differences in these steps. The variety of definitions of dynamic architectural change and the need
for an increased level of understanding regarding these systems underline the need for the development of a
classification framework or taxonomy.

3 Organizing Dynamic Software Architectures

In developing useful criteria for classifying dynamic architectures we considered existing classification ap-
proaches in the software architecture community and the software evolutionary change community. First,

3

What type of change is

supported?

What kind of process

implements the

change?

What infrastructure is

available to support the

change process?

Basic reconfiguration

operations

Composite

reconfiguration

operations

Variability of

architectural elements

Initiation

Selection

Implementation

Assessment

Management

Separation of concerns

Architectural structure

Architectural

representation

Dynamic

Software

Architecture

Figure 1: Classification criteria for dynamic software architectural change

The above diagram outlines the proposed classification criteria for dynamic software architectures. The
approach is based on understanding three fundamental questions regarding change in a dynamic software
architecture. The properties for each question are listed in the boxes at the bottom of the diagram.

we considered the Shaw and Garlan organizational framework for architectural formalisms, existing Archi-
tecture Description Language (ADL) surveys, and the ACME architecture ontology. Second, we looked
at work on software evolutionary change taxonomies based on the purpose of change and the mechanisms
for change. After considering the existing work we concluded that a set of new classification criteria for a
dedicated comparison of dynamic software architectures was needed.

3.1 Proposed Classification Criteria

To address the need for a more focused comparison we propose a framework that answers the three fun-
damental questions presented in Section 1. That is, we organize dynamic architecture definitions and for-
malisms based on the type of change, the process of change, and the infrastructure for change (see Figure 1).
A classification based on these three topics allows us to consider both evolutionary change and architec-
tural issues. On the one hand, criteria related to change process demonstrate aspects of the evolutionary
change within dynamic software architectures. On the other hand, criteria related to change infrastructure
demonstrate architectural related issues.

3.1.1 Change Type

We evaluate the ability to specify the possible changes that can occur in a given system. The possible
changes range over a two-dimensional grid consisting of reconfiguration operations as one dimension and
architectural elements available to be used in the change as the other.

Basic Reconfiguration Operations.The basic reconfiguration operations are component addition, com-
ponent removal, connector addition, and connector removal. The ability to represent these basic operations
in a composite form is also considered. For example, the use of scripts is one means to achieve composite op-
erations. In composite operations we consider not only the ability to add or remove subsystems or groups of
architectural elements but also the constructs that can be used in specifying the operation (e.g., sequencing,
choice, and iteration).

4

Composite Reconfiguration Operations.The ability to represent the basic operations in a composite
form is also considered. For example, the use of scripts is one means to achieve composite operations. In
composite operations we consider not only the ability to add or remove subsystems or groups of architectural
elements but also the constructs that can be used in specifying the operation (e.g., sequencing, choice, and
iteration).

Variability of Architectural Elements. The set of architectural element instances (the components and
connectors) involved in the change can be fixed to the set of elements included with the software system
prior to run-time or the set can be variable in components and connectors added during run-time. We can
also have partial variability by fixing the types of elements but allowing new instances of elements. Variable
sets of architectural element types are necessary to allow for the evolution of safety- and mission-critical
software as well as high availability software.

3.1.2 Change Process

As previously mentioned all dynamic architectural changes have four steps: initiation, selection of archi-
tectural transformation, implementation of reconfiguration, and assessment of architecture after reconfigura-
tion [And00] (Figure 2).

Initiation. The trigger that initiates a reconfiguration change can be external or internal. On the one
hand, the run-time reconfiguration can be triggered externally by the environment or the user. On the other
hand, the run-time reconfiguration can be triggered internally by the state of the system, for example, the
status of a shared variable.

Selection. Reconfiguration operation selection considers the ability of a given dynamic architecture to
support one of the following selection options:

1. Explicit Selection:Once dynamic change has been initiated an explicit selection by an external source

SELECTION

Explicit Selection

Constrained Selection

from Pre-defined Set of

Configurations

Unconstrained

Selection

INITIATION

External Trigger

(environment, user)

Internal Trigger

(system state,

predefined events)

IMPLEMENTATION

Once dynamic change has been

completed

If composite

operation involves

selection/

implementation

loop
Pre-defined

Selection

ASSESSMENT/

ANALYSIS

System

Change

Architecture

1 2 3 4

Figure 2: Change process

A typical change process has four distinct steps: initiation of change (➀), selection of an architectural trans-
formation (➁), implementation of a reconfiguration (➂), assessment of the architecture after reconfiguration
(➃). Although this is the order of steps given in [And00], it is also possible to conduct assessment during
selection (➁) as well as before the implementation of the change (➂).

5

such as a user can occur at run-time.

2. Pre-defined Selection:Once dynamic change has been initiated, a selection pre-defined prior to run-
time is made. This is similar to explicit selection in that the pre-defined selection is also explicit.

3. Constrained Selection from a pre-defined Set:Once dynamic change has been initiated there is some
choice in what operation to use. For example, a set of operations is defined prior to run-time for a
given situation or state. The system, upon reaching the situation, will select the appropriate change
from the set.

4. Unconstrained Selection:Once dynamic change has been initiated there is an unconstrained choice
regarding the appropriate operation to use. On the one hand, if the architectural elements are fixed to
those included prior to run-time this selection would involve operation selection from the entire set
of possible operations available. On the other hand, if additional components are allowed to be made
available for consideration in operations there could be a much larger set of operations from which to
select.

Implementation. In the context of dynamic architectures the implementation is the underlying notation
used to represent the change. For example, in formal approaches to dynamic architectures the implementa-
tion is simply the formalism used to represent the dynamic change.

Assessment.The assessment of a dynamic architecture usually involves constraints such as system con-
straints, change constraints, and architectural constraints. For example, in formal specifications of dynamic
architectures we consider current support related to constraints. The assessment support in architectural
specifications varies from direct formal analysis, to simulation, to formal analysis after translation to pure
form of formalism used, to no assessment support.

3.1.3 The Infrastructure for Change

In addition to the specification of the change itself and the change process we also consider infrastructure
issues which may influence the representation of dynamic reconfiguration systems.

Management.The management of reconfiguration can be either centralized in a specialized component
or distributed across components. Self-organising architectures have distributed management, but otherwise
the kind of management is typically independent of the kind of dynamic architecture.

Separation of Change and Computation. We consider the separation of change or reconfiguration
from computation. A combination of reconfiguration and computation “...often results in a proposal that
is not uniform, or has complex semantics, or does not make the relationship between reconfiguration and
computation clear enough” [WLF01]. We distinguish between partial and full separation. That is, the ability
to provide some separation of the computation and change is partial separation while the ability to provide
separation of concerns into different distinct parts of the specification is full separation.

Architectural Structure. We consider how the structure or architecture of a system is represented. Some
approaches explicitly represent the structure of the system’s architecture, while others explicitly represent
the architectural style of a given system.

Architectural Representation of Components and Connectors.We compare how components and
connectors are represented within a given dynamic architecture. The components and connectors are the
elements of the architecture that are used in the change and thus their representation is a criterion that should
be considered. For example, the use of the COMMUNITY programming language in a category theory ap-
proach to dynamic architectures [WLF01] or the use of a notation similar to the Communicating Sequential
Processes (CSP) in another graph-based approach [Mét96] are possible representations of architectural ele-
ments.

6

Programmed Ad-hoc Self-organising
What type of change is supported?
reconfiguration opera-
tions

possibly all possibly all possibly all

variability of architec-
tural elements

fixed (most likely) variable, fixed fixed (most likely)

What kind of process implements the change?
initiation internal external internal
selection constrained or possible

pre-defined
explicit (most likely) unconstrained (most

likely)
implementation * * *
assessment * * *
What infrastructure is available to support the change process?
management centralized (most likely) centralized (most likely) distributed
separation of concerns * * *
architectural represen-
tation: components

* * *

architectural represen-
tation: connectors

* * *

Table 1: Classification of programmed, ad-hoc, and self-organising dynamic change using proposed criteria

This table shows how programmed, ad-hoc, and self-organising systems would be classified using the pro-
posed classification criteria. Values represented as “*” indicate that the property is implementation depen-
dent and not change dependent.

4 Evaluation of Dynamic Software Architecture Definitions

The proposed classification criteria were developed with the intention of classifying dynamic architecture
formalisms, tools and technologies. To demonstrate the use of the proposed taxonomy we consider how
systems that use different types of change might vary. Specifically, we consider systems that are ad-hoc, pro-
grammed, and self-organising (See Section 2 for details). We have chosen these types of dynamism because
they reflect many of the variations that exist within dynamic software architectures. Since we are consider-
ing types of systems and not actual systems, some of the property values are implementation dependent and
cannot be defined. Table 1 provides complete details of our comparison.

Our comparison shows the distinguishing features that differentiate one type of change from another.
For example, the initiation and selection steps in the change process, the management, and the variability of
architectural elements. We are confident that if our approach was applied to specific systems of each type
we would be able to further classify them by considering all of the implementation dependent properties.

The evaluation of different types of dynamic change is a first step in demonstrating the usefulness of our
criteria. We will further evaluate our proposed criteria when we evaluate dynamic architectural formalisms.

5 Formal Specification Techniques for Software Architecture

Software architecture is most commonly described using informal or semi-formal techniques [SNH95], for
example the Unified Modeling Language (UML) [HNS99]. Often architectures are expressed using box and
line diagrams with a brief textual description outlining meaning and design choices [SG95]. Although infor-
mal and semi-formal techniques are most common, formal techniques do have advantages. In general formal

7

approaches to architectural description are considered advantageous for several reasons: lack of ambiguity,
ability to detect inconsistencies, the establishment of traceability between the system architecture and the
source code, and the ability to provide automatic tools for analysis of the architecture.

A study of software architecture in industrial applications confirmed these results [SNH95]. The study
also found that when architectures are described informally, similarities between architectures are difficult
to exploit and differences between architectures are more difficult to identify.

Although formal specification has its benefits, it is not our intention to imply that informal techniques
are not necessary. In fact, there is a need for both informal and formal specification of software architectures.
This is reflected in the current practice of using formalisms. That is, even when formal techniques are used
they are often complemented by the use of informal diagrams that enable greater understanding of the formal
model.

In this paper the focus is on formal specification and we define a formal description of an architecture as
a specification of an architecture that has the following [vL00]:

• syntax:rules for assessing well-formedness of sentences.

• semantics:rules for meaningful interpretation of syntax.

• proof theory:rules for inferring non-trivial information.

Formal approaches to dynamic software architectures involve the specification of the architectural struc-
ture of a system, the architectural reconfiguration of a system, and sometimes the component behavior of a
system (see Figure 3). Approaches that specify all three aspects are said to becomplete specificationswhile
those that exclude component behavior are said to bepartial specifications. In order to specify dynamic
architectures the specification of both the architectural structure and the architectural reconfiguration are
essential. The omission of one or both will lead to an incomplete specification in the dynamism context.

In addition to the distinction between partial and complete specifications it is important to discussconfig-
uration programming[Kra90]. This notion is important to understand because of the strong connection be-
tween work on distributed system reconfiguration and software architectural reconfiguration. In fact, some of

Architectural

Reconfiguration
A specification language that

specifies reconfiguration and

architectural structure without

specifying behavior is a partial

specification.
A specification language that

specifies reconfiguration,

architectural structure and

behavior is a complete

specification.

Structure of

Architecture

Component

Behavior

Figure 3: Partial and complete specification of dynamic software architectures

The above Venn diagram defines partial and complete specification in the context of architectural structure,
architectural reconfiguration, and component behavior. If a specification approach consists of all three it is
complete while the exclusion of component behavior makes a specification incomplete.

8

Dynamic Software Architecture Approaches References
Graph-Based Formalisms

Le Métayer Approach [Mét96]
Hirsh et al. Approach [HIM98], [HIM99], [HM99], [HM00], [Hir03]
Taentzer et al. Approach [TGM98], [TGM99]
COMMUNITY [Wer99], [WF99], [WLF01], [WF02]
CHAM [Wer98b], [Wer98a], [Wer99]

Process Algebra Formalisms
Dynamic Wright [ADG97], [All97], [ADG98]
Darwin [MDK93], [MDK94], [MDEK95], [MK96], [KM98],

[Dar], [Dar97]
LEDA [CPT98a], [CPT98b], [CPT99]
PiLar [CdlFBS01], [CdlFBSB02a], [CdlFBSB02b]

Logic-Based Formalisms
Gerel [EW92], [End94]
Aguirre-Maibaum Approach [AM02a], [AM02b], [AM03a], [AM03b]
ZCL [dPJC98], [dP99], [dPJC00]

Other Formalisms
C2SADEL [MORT96], [Med96], [Ore96], [OMT98], [Ore98],

[OT98]
RAPIDE [LKA +95], [LV95], [Rap96], [VPL99]

Table 2: Formal specification approaches for dynamic software architectures

This table lists 14 approaches to the formal specification of dynamic software architectures and categorizes
them according to the formalism that is used in the specification. The main references for each approach are
also listed.

the approaches in the former have evolved to be used in the later. Configuration programming is a distributed
programming approach in which a formal configuration language is developed to specify the configuration
and reconfiguration of a system. This new specification language is designed to be used in conjunction
with a standard programming language which specifies component behavior. The configuration language
specification in this approach can be thought of as a partial specification.

The formal approaches to specifying dynamic software architectures that we consider are: the Aguirre-
Maibaum approach,C2SADEL, CHAM, COMMUNITY , Darwin, Dynamic Wright, Gerel, the Hirsh et al.
approach, LEDA, the Le Ḿetayer approach, PiLar , RAPIDE, Taentzer et al. approach, and ZCL. Details
regarding these approaches can be found in Table 2.

6 Graph-Based Formalisms

A natural way to specify software architectures and architectural styles is to use a graph grammar to represent
the style and a graph to represent a specific system’s architecture. One of the earlier approaches to formally
specifying a static software architecture as a graph was the approach by Dean and Cordy which used typed
directed multigraphs [DC95].

Graphs are not only a common formalism in the specification of static software architectures but also
dynamic architecture. A natural way to specify reconfiguration in a dynamic architecture is to use graph
rewriting rules to represent the reconfiguration. Approximately one-third of the approaches we consider in
the specification of dynamic software architectures have used graph rewriting as an underlying formalisms.
The Le Métayer approach and the Hirsh et al. approach are based on the use context-free graph gram-

9

mars to represent architectural styles, graphs to represent an architectural instance, and standard rewriting
rules to represent the reconfiguration. The Taentzer et al. approach uses the notion of a distributed graph.
The COMMUNITY Approach has a formal specification language based firmly in category theory with ar-
chitectural reconfiguration specified using the double-pushout graph transformation. Finally, the Chemical
Abstract Machine (CHAM) approach uses a chemical metaphor that is similar to graph rewriting. We will
now provide high-level summaries of these approaches. In our description of each approach we will use an
example of a client-server system.

6.1 Le Métayer Approach

Architectural styles in the Le Ḿetayer approach are defined as context-free graph grammars. Formally, the
architectural style is defined by a four-tuple[NT,T,PR,AX] where:

• NT: set of non-terminal symbols

• T: set of terminal symbols

• PR:finite set of production rules

• AX: the origin of derivation (an axiom)

A software architecture is generated from the graph grammar and is defined as a graph where nodes
represent components and edges represent connectors [Mét96]. Nodes, in the graph of an architecture, map
to programming language descriptions of the component’s internal behavior to form an architectural instance.
A coordinator is used to manage the architecture and is expressed using conditional graph rewriting.

Figure 4 provides an example of a client-server architecture using the Le Métayer approach. For the
client-server example the architectural style is defined as the four-tuple:

Hcs = [{CS,CS1},{M,X,C,S,CR,CA,SR,SA},R,CS]

whereR is the set of productions in the “Architectural Style” section of Figure 4. In addition to the architec-
tural style, the representation of a system in the Le Métayer approach also defines: link types, a coordinator,
and entities. The link types are used as terminal symbols in the graph grammar and are defined in terms of
the components they connect. The coordinator defines the reconfiguration of the system and consists of a
set of graph rewriting rules. In Figure 4, there are two rules, one to add a client component and the other to
remove the component. To restrict the behavior of the system side conditions are used in the rewriting. For
example, consider the rule:

X(x), M(m), x.newc = true → X(x’), M(m), CR(c,m), CA(m,c), C(c)

The side conditionx.newc = true in this rule refers to the public variablenewc in the external envi-
ronment being true. The rewriting rule for adding a client component can only take place when this side
rule is satisfied. An algorithm is also provided to verify that the changes made by the rewriting rules of the
coordinator do not violate the architectural style. As previously mentioned, the components can be specified
in any programming language however Le Métayer defines a component as consisting of public and private
variables, input and output links, entity names (used in the architectural style production rules), and a body
indicating the components behavior. The body is expressed using a notation similar to the Communicating
Sequential Processes (CSP). In this notation the2 is used to represent choice, the * is used to represent
iteration, and the ? and ! are used to specify input and output commands. For example, in the client-server
system the output commands∈ SR!r in the manager is matched up with the input commandm∈ SR?r in
some client to form a connection. In this case the client instance is not explicitly named. Commands of the

10

Architectural Style
CS ⇒ CS1(m)
CS1(m) ⇒ CR(c,m), CA(m,c), C(c), CS 1(m)
CS1(m) ⇒ SR(m,s), SA(sm,), S(s), CS 1(m)
CS1(m) ⇒ M(m), X(x)

Link Types
C: client S: server
M: manager X: external
CR: client × manager CA: manager × client
SR: manager × server SA: server × manger

Coordinator
CooCS =

X(x), M(m), x.newc = true → X(x’), M(m), CR(c,m), CA(m,c), C(c)
C(c), c.leave=true, CR(c,m), CA(m,c) → ∅

Entities

client: pub leave : bool
priv r,a : int
out CR
in CA
ent m
body Init c;

leave := false;
*[Cond 1 → C1 2

Cond2 → m ∈ CR ! r;
m : CA ?a];

leave := true

server: priv r : int
out SA
in SR
ent m
body *[m ∈ SR ? r → m : SA ! f(r)]

manager: priv r,a : int
out SR, CA
in CR, SA
ent c,s
body *[c ∈ CR ? r → s ∈ SR ! r;

s: SA ? a;
c: CA ! a]

external: pub newc : bool
body Init e;

newc := false;
*[Cond 3 → C3];
newc := true;

Figure 4: Sample code for a client-server example using the Le Métayer specification language [Mét96]

11

form s : SA?a are used when there is an explicit specification of the other component involved. For example,
in the above it is servers. Additionally, in the client-server exampleC1, C3, Cond1, Cond2, andCond3 are
boolean expressions which for simplicity have not been completed.

Informally the CSP-like notation, used in the bodies of the components in our client-server example,
does the following:

• Client: The client is first initialized and the public variableleave is set to false. Then the component
does some internal computation or sends a request to a manager component and waits for a response.
It is possible for this behavior to occur multiple times before theleave variable is set to true. The
coordinator uses theleave variable as a side condition in the rewriting rule for removing a client.

• Server:The server receives requests from the manager and for each request, sends a response back to
the manager.

• Manager: The manager continuously waits for client requests, sends them to the server, receives an
answer from the server, and finally sends the answer to the client.

• External: The external component that represents the environment is first initialized and the pulic
variablenewc is set to false. Then the environment does some internal computation, possibly multiple
times, before setting thenewc variable to true. This variable is used as previously discussed in the
coordinator.

6.2 Hirsh et al. Approach

The Hirsh et al. approach to representing architectural styles is similar to the Le Métayer approach. As
in [Mét96], context-free graph grammars are used to represent architectural styles and graphs are used to
represent architectures. Unlike the Le Métayer approach, edges represent components and nodes represent
connectors [HIM98]. Edges are represented as boxes while point-to-point communication nodes are white
circles and broadcast communication nodes are black circles.

The context-free grammars used in the Hirsch et al. approach involve three distinct sets of production
rules of the formL → R whereL is the part of the graph to be rewritten andR is the new graph. The three
sets are:

1. Static productions:used for the construction of the initial configuration of an architectural style.

2. Dynamic productions:used to create and remove architectural elements and define dynamic evolution.

3. Communication pattern productions:used to describe the communication between components.

This brings up another difference between the Le Métayer approach and the Hirsh et al. approach. Hirsch
et al. use a uniform representation of grammars for the construction of the architectural style, the evolution
of the architecture, and the behavior of the system while Le Métayer used grammar production rules for the
construction, graph rewriting rules for the evolution, and a CSP-like notation to represent behavior [HIM99].

Figure 5 provides the production rules for representing a client-server example. Figure 5(a) shows the
static productions. The first two productions (from left to right) show how to construct an architecture while
the last three productions show how to initialize the architecture after construction is complete. Figure 5(b)
shows two dynamic productions used for evolution, the first adds a client component to the architecture
and the second removes a client component from the architecture. Figure 5(c) shows the communication
pattern productions which describe the system behavior in terms of communication. The first three rows of
productions show the state of each component and its communication ports as time moves from left to right.

12

C

(init)

CRSR

SA CA

M

(init)

CR

CA

M

(init)

CRSR

SA CA

M

(init)

CRSR

SA CA

M

(idle)

CR

CA

C

(init)

CR

CA

C

(idle)

SR

SA

S

(init)

SR

SA

S

(idle)

CRSR

SA CA

M

(init)

CRSR

SA CA

M

(init)

SR

SA

S

(init)

(a) Static productions for client-server example

C

(idle)

CR

CA

C

(idle)

CR

CA

CRSR

SA CA

M

(idle)

CRSR

SA CA

M

(idle)

(b) Dynamic productions for client-server example

CR

CA

C

(wa)

CR

CA

C

(idle)

CRSR

SA CA

M

(idle)

CRSR

SA CA

M

(pcr)

CRSR

SA CA

M

(wsa)

CRSR

SA CA

M

(psa)

CRSR

SA CA

M

(idle)

SR

SA

S

(idle)

SR

SA

S

(pr)

SR

SA

S

(idle)

CR

CA

M

(pcr)

C

(wa)
idle

CRSR

SA CA

M

(wsa)

C

(wa)

S

(pr)

CRSR

SA CA

M

(psa)

C

(wa)

S

(idle)

CRSR

SA CA

M

(idle)

C

(idle)

S

(idle)

req
c

ans
c

req
s

ans
s

req
c

req
s

ans
s

ans
c

req
c

req
c

req
s

req
s

ans
c

ans
c

ans
s

ans
s

wa: waiting answer

pcr: processing client request

wsa: waiting server answer

psa: processing server answer

pr: processing request

CR

CA

C

(idle)

SR

SA

S

(idle)

(c) Communication pattern productions for client-server example

Figure 5: Client-server example using Hirsh et al. approach [HIM98]

13

The last row of productions shows the same behavior but in a system view rather then a component view. The
communication pattern productions are labeled with a Calculus of Communicating Systems (CCS) notation.
Hirsch et al. useeventto represent an initation event andeventto represent an observed event. For example,
in the client-server system, a client initiates areqc and the manager observes the event (represented asreqc).

Dynamic productions can be applied only when the components are in an idle state. For example, in
Figure 5(b), a client component can only be connected to a manager component when the manager is idle
while a client component can only be removed when it itself is idle. The communication pattern productions
in Figure 5(c) govern when a component will reach an idle state.

6.3 Taentzer et al. Approach

Software architectures and reconfiguration are described in the Taentzer et al. approach using distributed
graphs and distributed graph transformations. Distributed graphs consist of two types of graphs [TGM98]:

1. network graph:nodes represent components while edges represent communication paths (connectors).

2. local graph:each node in a network graph has a corresponding local graph and each edge in a network
graph has a corresponding relation at the local graph level.

Figure 6(a) contains a client-server system represented as a distributed graph. At the network level we see
the architecture of the software showing the relationship between client components and a server component.
Each node at the network level is tied to a local graph. This graph has nodes representing: body elements

NETWORK LEVEL

LOCAL LEVEL

Client
1

Client
2

Server
1

network graph

distributed network

edges

Server
1

Client
2

Client
1

distributed graph

relations

local graphs

1

3

1 2

2

3

(a) Network and local level architecture

 remove client (String Client
1
)

L NACR

NV = {Client
1
, Server

1
}

Client
1

Client
1

Server
1

Server
1 not

quiet

 add client (String Client
1
)

L NACR

NV = {Client
1
, Server

1
}

Server
1

Server
1

not

quiet

Client
1

Server
1

(b) Change management rules

Figure 6: Client-server example as a distributed graph

In (a), a client-server distributed graph is presented. At the network level we see the topology of the archi-
tecture as interconnected components and connectors. Each component is also related to a local level graph.
In (b), we see two network level change management rules for removing and adding a client component. In
these change management rules the name of the rule and any parameters appear at the top. Node attribute
variables are defined at the bottom and the NAC conditions are defined on the right.

14

(medium gray), exported elements (light gray), imported elements (black), and imported/exported elements
(light gray and black mixed) [TGM98]. Basically, the body elements represent the local data and the other
elements represent the interfaces. For simplicity we have not made the distinction between the different
coloured nodes in our example. Behavior and state change at the local (component) level is represented as
local graph transformations.

Distributed graph transformations can be used at the network level as well as the local level. Transfor-
mations at the network level describe dynamic reconfiguration. Distributed rules are presented graphical
where the left hand side represents the old or previous configuration and the right-hand side represents the
new or future configuration. Only nodes that are affected by the change are included in the rule. Figure 6(b)
contains two reconfiguration rules, one for client addition and one for client removal.

A rule can not take place unless the left-hand side of the rule matches part of the current system and
unless the nodes are in a quiescent state . A quiescent state exists “...if the application’s state is consistent
and there is no communication in progress between nodes affected by a change nor betweren them and
their environment” [TGM99]. Before a rule is applied, application conditions have to be checked (e.g.
gluing conditions, connection conditions, network conditions, splitting conditions, and negative application
conditions (NACs)). This ensures that an illegal graph structure is not obtained by applying the rule [TGM98]
and thus guarantees that after the transformation we still have a distributed graph.

6.4 COMM UNITY

Software architecture is represented by a labeled graph using category theory semantics. Components are
nodes in the graph and are written in a subset of the COMMUNITY program design language [FM97] and
connectors are just degenerate COMMUNITY programs. Reconfiguration of a software architecture is done
using algebraic graph rewriting. Specifically, reconfiguration uses the double-pushout graph transformation.

Recently this work has been extended and an architectural specification language has been developed
to hide the underlying formalism of category theory [WLF01]. Figure 7 shows a partial specification of an
architecture in this language.

architecture ClientServer
design Client

in CA : bool
out CR : bool
do ...

design Manager...
design Server....
connectors
connector ClientReceive(Client, Manager)

design
in
out
do ...

channel ...
channel ...

connector ClientAnswer(Manager, Client)...
connector ServerReceive(Manager, Server)...

connector ServerAnswer (Server, Manager)...
variables name : nat
constraint C
end architecture

script Main
...
end script

script AddClient
out c: Client;
c := create Client with data := 0;
end script

script RemoveClient
remove ...
end script

Figure 7: Sample code for a client-server example using the COMMUNITY specification language

15

The structure and behavior of a system is defined through component definitions (using the keyword
design and connector definitions which connect the components. For example, in our client-server system
we have three component definitions:Client, Manager, andServer. We also have four connectors defining
the communication of these components. TheClientReceiveconnector, for example, connects aClient with
aManager.

Reconfiguration in the COMMUNITY approach supports basic and composite commands. Basic com-
mands support the notion of component and connector addition and removal. Composite commands are
combinations of basic commands using operators for sequencing, choice, and iteration. The reconfiguration
commands are contained in hierarchical scripts that are separate from the description of the architecture and
behavior of the system.

A reconfiguration interpreter manages the coordination of the system in terms of computation and recon-
figuration as follows:

1. Execution of one computation step

2. If the user wants he/she can choose and execute a top-level script. If no script is chosen then the ‘Main’
script, if it exists, is executed.

3. Go back to the first step.

Note that the reconfiguration scripts are implemented on the architecture only if execution of the entire script
will not violate any of the constraints contained in the global conjunction C. [WF99].

6.5 Chemical Abstract Machine (CHAM)

The CHAM formalism is based on a metaphor of chemical solutions and reactions [BB92]. Reactions occur
based on a set of reaction rules which are applied to molecules. This concept is very similar to using
grammars and rewriting rules. The CHAM formalism has been used in the specification of static software
architectures [IW95, IWY97]. More recently, Wermelinger has applied the use of the CHAM formalism to
dynamic software architectures [Wer98b, Wer99]. In his approach a creation CHAM is used to formalize an
architectural style while an evolution CHAM is used for the reconfiguration. If we continue the metaphor
of solutions and reactions, the creation CHAM is a set of reaction rules that can generate all solutions
(architectures) possible and the evolution CHAM is a set of reaction rules that can transform the solution
(architecture) after it has been created [Wer98b]. The reaction rules for both types of CHAMs show how
components are linked. In order to also show how components can be created and removed two commands
are required:create component(cc) andremove component(rc) [Wer98b].

The CHAM approach to dynamism has been applied to ad-hoc and programmed dynamism as well as
self-organising architectures. The difference between each type of change when represented in the CHAM
is as follows [Wer98b]:

• ad-hoc dynamism:ad-hoc changes are often initated externally by the user. Therefore, the evolution
CHAM that contains the reaction rules which represents these changes only consume creation and
removal commands (i.e. the cc and rc commands appear only on the left side of the rules). The
consumption of creation and removal commands models the consumption of ad-hoc changes by the
system from the user.

• programmed dynamism:programmed changes are usually initated internally and have been defined
prior to run-time. Therefore, the evolution CHAM that contains reaction rules which represents these
changes can both consume and produce creation and removal commands (i.e. the cc and rc commands
can appear on both sides of the rules). The production of creation and removal commands models the
ability of changes to be produced internally in a system with programmed dynamism.

16

Molecule Grammar:
Molecule := Component| Link | Commmand
Component := Id: Type
Type := C| M | S
Link := Id−Id
Command := cc(Component)| rc(Id)

Creation CHAM:
cc(m:M)→ c:C, c−m, cc(m:M)
cc(m:M)→ s:S, m−s, cc(m:M)
s:S, cc(m:M)→ s:S, m:M

Evolution CHAM:
cc(c:C), m:M→ c:C, c−m, m:M
cc(s:S), m:M→ s:S, m−s, m:M
rc(c), c:C, c−m→ s:S, rc(s), s:S, m−s→ s:S
m:M, rc(m), cc(m:M)→ ms, m:M
m−s, m:M→ m−s, m:M
c−m, m:M→ c−m, m:M

Figure 8: Client-server example using CHAM formalism [Wer98b]

• self-organising architectures:self-organising architectures involve distributed reconfiguration of con-
nectors. Therefore, the evolution CHAM for this type of dynamism contains reaction rules that neither
consume nor produce reconfiguration commands. That is, the reaction rules do not involve the cre-
ation or removal of components but instead involve only the reorganization of connectors defined by
the rules themselves.

We show the grammar for molecules, the creation CHAM, and the evolution CHAM for an example of an
ad-hoc client-server example in Figure 8. The molecule grammar defines a molecule as a component, link,
or command. The creation CHAM specifies the client-server architectural style and assumes that any system
matching the style has at least one server. The evolution CHAM outlines the architectural reconfiguration.
In our client-server example the evolution CHAM described client creation, server creation, client removal,
server removal, and manager substitution.

7 Process Algebra Formalisms

Process algebras are commonly used to study concurrent systems. Processes in the concurrent system are
specified in an algebra and a calculus is used to verify the specification [vG87]. A variety of process alge-
bras exist including the Calculus of Communicating Systems (CCS), Communicating Sequential Processes
(CSP), and theπ-calculus. We will now describe four approaches to specifying dynamic software architec-
tures with process algebra: Dynamic Wright, Darwin, LEDA, and PiLar.

7.1 Dynamic Wright

Dynamic Wright represents the structure of an architecture as a graph in which components and connectors
are nodes (See Figure 9) [ADG98] and specifies the behavior and reconfiguration of a system in a variant
of the process algebra CSP. “The basic idea is to treat both components and connectors as processes, which
synchronize over suitably renamed alphabets” [ADG97].

Dynamic Wright supports the notion of internal choice (u), external choice (2), and successful termina-
tion (§) in the context of component behavior [ADG97]. If internal choice is used a component can choose
whether or not to perform an event. If external choice is used a component has to perform an event from
a finite list and cannot terminate until a successful termination has occurred. Additionally, if a component
initiates an event it is written with an overbar (e.g.event) while an event that is just observed has no overbar
(e.g.event) [All97].

17

The semantics of the variant of CSP used is defined by a translation to pure CSP. However, one of
the restrictions of the CSP process algebra, in the context of Dynamic Wright, is that CSP describes static
configurations only. Dynamic configurations cannot be described. Thus, the dynamic behavior has to be
simulated in the translation. This is achieved by [ADG97]:

• Restricting a given system to a finite set of configurations.

• “Tagging” each event with the configuration in which it occurs.

• Simulating reconfiguration by changing the tags.

We will now show how CSP is used in the definition of component and connector types (as defined in a
style) and the specification of architectural configuration and reconfiguration (as defined in a configuror).

The style in a Dynamic Wright specification defines three kinds of information [ADG98]:

1. Component types:a component has a defined interface (port) and defined behavior (computation).

2. Connector types:a connector has a defined interface (role) and defined behavior (glue).

3. Constraints:first-order logic constraints can be specified regarding the components, connectors, and
their interactions.

To demonstrate the specification of components and connectors in Dynamic Wright we consider the port
p in the Client component (see Figure 10) defined as:

p = request→ reply→ pu §

This statement means that portp will initiate a requestevent and observe areply event any number of times
before deciding to terminate.

A configuror describes how the components and connector types of an architecture interact. In the
configuror in Figure 10 an initial style is first described that instantiates the component and connector types
and then attaches them. This initial configuration is prefaced by the keywordstyle.

In addition to an initial configuration two reconfigurations are defined. In each reconfiguration, also pref-
aced with the keywordstyle, new, del, attachanddetachoperations are used to change the way architectural
elements are connected. Each reconfiguration is invoked by a condition, for example, consider the definition
of WaitForDownin the client-server example (see Figure 10). In this example a fault can occur or the system
can run correctly and terminate. In the case of the fault, thePrimary server is detached and theSecondary
server is attached.

C L

Configuror

Primary

Secondary

C L

Configuror

Primary

Secondary

Figure 9: Alternating configurations of fault-tolerant client-server system with Dynamic Wright [ADG97]

18

StyleFault-Tolerant-Client-Server
ComponentClient

Port p = request→ reply→ pu §
Computation = internalCompute→ p.request→ p.reply→ Computation u §

ComponentFlakyServer
Port p = §2(request→ reply→ pucontrol.down→ (§2control.up→ p))
Computation = §2(p.request→ internalCompute→ p.reply→ Computation

ucontrol.down→ (§2control.up→ Computation))

ComponentSlowServer
Port p = §2(control.on→ µ Loop.(request→ reply→ Loop2control.off → p2 §))
Computation = §2control.on→ µ Loop.(p.request→ internalCompute→

p.reply→ Loop2control.off → Computation 2 §)

ConnectorFaultTolerantLink
Rolec = request→ reply→ c2 §
Roles= (request→ reply→ s2control.ChangeOK→ s)2 §
Glue c.request→ s.request→ Glue

2s.reply→ c.reply→ Glue
2 §
2control.ChangeOK→ Glue

Constraints
∃!s∈ Component,∀c∈ Component: TypeServer(s) ∧ TypeClient(c)⇒ connected(c,s)

EndStyle

Configuror DynamicClientServer
StyleFault-Tolerant-Client-Server

new.C : Client
→ new.Primary : FlakyServer
→ new.Secondary: SlowServer
→ new.L : FaultTolerantLink
→ attach.C.p.to.L.c
→ attach.Primary.p.to.L.s→WaitForDown

where
WaitForDown= (Primary.control.down→ Secondary.control.on→ L.control.changeOk→

StyleFault-Tolerant-Client-Server
detach.Primary.p.from.L.s→ attach.Secondary.p.to.L.s→WaitForUp)

2§
WaitForUp = (Primary.control.up→ Secondary.control.off → L.control.changeOk→

StyleFault-Tolerant-Client-Server
detach.Secondary.p.from.L.s→ attach.Primary.p.to.L.s→WaitForDown)

2 §

Figure 10: Client-server example using Dynamic Wright [ADG97, ADG98]

19

7.2 Darwin

Darwin is a declarative ADL that supports dynamic behaviour at the architectural level. Darwin was origi-
nally developed as a configuration language for Regis, a distributed programmming environment [MDK94].
The use of the configuration language Darwin has evolved and led to its use as an architecture descrip-
tion language. Darwin has both a graphical and text representation and an operational semantics based
on theπ-calculus, an extension of CCS [MDEK95]. Unlike the CSP notation used in Dynamic Wright,
theπ-calculus is a mobile calculus developed specifically for communicating systems with changing struc-
ture [MPW92a, MPW92b].

Systems defined using the Darwin language can be hierarchical, consisting of basic computational com-
ponents and composite components. The basic components are usually defined in a programming language.
For example, in the Regis environment the basic components are programmed in C++ [MDK94]. Although
basic components are specified in a programming language, a basic component’s interface is still represented
in Darwin as a set of communication objects. The two types of communication objects are:provide (allow
other components to interact with them) andrequire (needed to interact with other components). Commu-
nication objects can also have annotations of information such as type which can be used to generate class
headers (e.g. in Regis).

Composite components, unlike basic components have no programming language implementation and
are only represented in the Darwin language. A composite component can consist of instantiations of basic
components and other composite components. The connectors between the instantiated components are
declared inbind statements. It is possible for many require communication objects to be bound to the same
provide object but only one require object can bind to a provide object [MDEK95].

Darwin allows for dynamic behavior at the architectural level in several different ways [MK96]:

• Lazy instantiation:a component is instantiated only after another component requests a service that it
provides. For example, in the client-server example in Figure 11(a), 11(b) a server is instantiated only
when a client requests servicep.

• Dynamic instantiation:a component is instantiated arbitrarily based on a service. For example, in the
client-server system in Figure 11(c), 11(d) a client is instantiated by a request for serviced. Further-
more, the client could also be instantiated through a service in the server as well. For example:

B.createClient -- dyn client

whereB is an instance of a server andcreateClient is a requirement for a dynamic instantiation
of a client component.

Darwin does not allow for the specification of dynamic bindings or component removal since thedyn
operator only applies to the instantiation of components.

7.3 LEDA

LEDA, like Darwin, uses theπ-calculus as the underlying formalism to specify dynamic software archi-
tectures. Components are specified in terms of an interface, composition, and attachments [CPT99]. The
interface is defined using instances of roles which define the behavior of components with other compo-
nents. Specifically, a behavioral representation of what is provided by the component and what is required
to connect to the component is defined. If the component is a composite component, the composition or
structure

20

: ClientServerSystem

A: Client B:Server

r p
trigger

binding

(a) lazy instantiation (graphical representation)

component Server {
provide p;

}

component Client {
require r;

}

component ClientServerSystem {
inst

A: Client;
B: dyn Server;

bind
A.r -- B.p;

}

(b) lazy instantiation (text representation)

: ClientServerSystem

B:Server: Client

p
context

binding

r

creation
d

(c) dynamic instantiation (graphical representation)

component Server {
provide p;

}

component Client {
require r;

}

component ClientServerSystem {
provide d <dyn >;
inst

A: Client;
B: Server;

bind
d -- dyn Client;
Client.r -- B.p;

}

(d) dynamic instantiation (text representation)

Figure 11: Sample code for two client-server examples using the Darwin specification language [MK96]

21

componentServer{
interface

serve: Serve(request) {
names

n : Integer:= 0;
spec is

(request?(reply).
(newservice)reply!(service).
n++.Serve(request);

}
composition

service[] : any;
}

componentClient {
interface

request: Request(request) {
spec is

(reply)request!(reply).
reply?(service).Request(request);

}
composition

service[] : any;
}

componentDynamicClientServer{
interface none;
composition

client : Client;
server[2] : Server;

attachments
clientrequest(r) <>

if (server[1].n <= server[2].n)
then server[1].serve(r);
elseserver[2].serve(r);

}

Figure 12: Sample code for a client-server example using the LEDA specification language [CPT99]

consists of instances of other components. The attachments define the connections between any component
instances. The attachments at the top level component, that is the architectural level, are connectors.

Attachments in a LEDA architecture can be static or reconfigurable. An example of a static attachment
would beclient.request(r) <> server[1].serve(r) for the architecture in Figure 12. This attachment is fixed
and indicates thatclient will always be connected toserver[1]. Note that<> is the symbol for attachment.
Reconfigurable attachments are used to support the notion of dynamism. The attachment in Figure 12 is an
example of a simple dynamic connection. In this attachmentserver[1] is used if its workload is less than that
of server[2], otherwiseserver[2] is used. LEDA also provides validation support to ensure that attachments
support the behavior specified in the roles of components being attached.

In addition to the specification of software architectures, LEDA also supports prototype execution. For
example, the Mobility Workbench (MWB) [VM94], aπ-calculus tool for analyzing concurrent systems can
be used to execute a LEDA specification since the underlying formalism isπ-calculus.

7.4 PiLar

PiLar Is aLanguage forARchitectural description that allows for the representation of hierarchical systems
that reconfigure dynamically. A system in PiLar can have two types of components: single components
and composite components. Single components have a set of one or more interface ports which define out-
going interaction points. Composite components can contain both interface ports and instances of single
or other composite components. In addition to interface definitions and component composition, a compo-
nent can also have a set of constraints defined in CCS. It is within the constraints that reconfiguration is
defined. PiLar has two types of primitive: operators (refer to components) and operations (perform recon-
figurations) [CdlFBS01].

22

comm

C

S

PL

C1

S1

Client

Inter

Server

C

S

L

C1

S1

Client

Server

C

S

C1

S1

Server

Client

comm

comm

CL

SV

tier

Proxy

(a) graphical representation of client-server reconfiguration

componentclient
[portC1]

componentserver
[portS1]

componentsystem
[C : client | S: server|
L : inter[C.C1 | S.S1]]

componentcomm
[portA | portB]

constraint
[Q1 , α.A(x).α.B(x).Q1 |

α .B(x).α.A(x).Q1]

componentinter
[portA | portB]

constraint
[Q2 , ρR1(α : comm[α.A | α.B]).α.B(H).

δR1.ρR2(α : tier[α .A | α.B])]

componenttier
[portA | portB]
[P : proxy| L1 : comm[A | P.CL] |
L2 : comm[P.SV| B]]

componentproxy
[portCL | portSV]

Base-level:[system]

(b) representation of client-server in PiLar

Figure 13: Client-server example using the PiLar language [CdlFBS01]

To demonstrate the use of PiLar we will show the specification of a client-server example (see Figure 13).
Notice that there are two constraints specified in this example: theinter component constraint and thecomm
component constraint. Theinter component constraint is as follows:

Q2 , ρR1(α : comm[α.A | α.B]).α.B(H).δR1.ρR2(α : tier[α.A | α.B])

In this constraint we see that an operator primitive (α) is used to refer to the current component while two
operation primitives are used to refer to the action of creation (ρ) and removal (δ). Understanding these
primitives and basic CCS we can now read the constraint as: “Reify (ρ) the avatar (α) with the archtype
commconnecting it with the required ports (α.A,α.B). Then wait for a message H to come from the server
side (α.B). When such a message arrives, destroy (δ) the previous reification (R1), and reify it again with
the archtypetier (ρR2(α : tier[α.A | α.B]))” [CdlFBS01].

Recent extensions to the initial definition of PiLar ([CdlFBSB02a, CdlFBSB02b]) have redefined the
semantics inπ-calculus and have developed a programming language style constraint language that is more
usable. We do not consider these extensions in our survey and classification.

23

8 Logic-Based Formalisms

In the section we outline approaches that use logic as a formal basis. Specifically, we discuss the Generic
Reconfiguration Language (Gerel) which is based on first-order logic, the Aguirre-Maibaum approach which
uses first-order logic and temporal logic, and ZCL which uses the Z specification language based on predicate
logic and set theory.

8.1 Generic Reconfiguration Language (Gerel)

Gerel was originally part of the Reconfigurable and Extensible Parallel and Distributed Systems (REX)
project. The description of Gerel as ageneric language comes from its ability to represent both ad-hoc
and programmed dynamism (see Section 2 for definitions). In the early 1990s when Gerel was developed,
many other configuration level languages supported ad-hoc change (e.g. Conic, Polylith/MIL, Lady) or
programmed dynamism (e.g. Durra, PRONET) but not both [EW92].

Gerel is an excellent example of a configuration language designed specifically to be used in conjunction
with a programming language. The relationship between the programming language and the configuration
language in Gerel is that the programming language is used for program components while the configura-
tion language is used for configuration components which are composed of program components and other
configuration components.

Dynamic change in Gerel is specified in a configuration component as a change script using the keyword
change. A Gerel change script can have the following commands [End94]:

• Basic commands:define reconfiguration actions.

createcomponentof comptype[”(” arguments”)”][at location]

deletecomponent

link port port

unlink port port

• Structured commands:define control flow.

selectgenericsymbol”:” formulado commandsend

forall genericsymbol”:” formulado commandsend

iterate i in ”[” low ”:” high ”]” do commandsend

Thegenericsymbols used in theselectandforall commands can be component instances, component types,
sets of ports or type of port [EW92].

Figure 14(b) shows a client-server system in the Gerel language. In the configuration component,client-
serversystem, a scriptremoveclientis provided. This script unbindsclient1 from a manager and then re-
moves it from the system using thedeleteoperation. The script is invoked by a boolean portleavein the
client component. This connection can be seen in the graphical representation of the system in Figure 14(a).

As previously mentioned Gerel was designed for use with a programming language. For example, the
Gerel scripts have been used inside a configuration management tool, built on top of Conic, calledgerel .
Conic is an environment for constructing distributed systems [MKS89]. The configuration manager performs
reconfigurations based on Gerel scripts. A script defines the change and can be invoked by a user or by any
application process [End94]. If a script is invoked by a user it is ad-hoc change and by an application process
it is a programmed change. The manager also contains commands which allow for new components types to
be used.

24

client1 server1
SA

SR

manager1

SA

SR

CA

CR

CA

CR

SA

SR

CA

CR

mcio[1]

.

.

.

mcio[n]

msio[1]

.

.

.

msio[n]

leave

change

removeClient

cio sio

Client-Server System

(a) graphical representation

unit client-serverinterf types
type clientio =
{CA: inport signal;
CR:output signalresult signal};

type serverio =
{SR: inport signal;
SA: output signalresult signal};

end.

componentclient
useclient-serverinterf types: clientio
interface

cio: clientio;
leave: outport signal result bool;

end;
/*Component body in prog. language */

end. /*client*/

componentserver
useclient-serverinterf types: serverio
interface

sio: serverio;
end;
/*Component body in prog. language */

end. /*server*/

componentmanager
useclient-serverinterf types: serverio, cli-

entio
interface

mcio[1..n]: invert clientio;
msio[1..n]: invert serverio;

end;
/*Component body in prog. language */

end. /*manager*/

componentclient-serversystem
interface
/*any interface ports go here*/ end;
useclient, server, manager;
createclient1of client;
createserver1of server;
createmanager1of manager;
bind client1.cio manager1.mcio[1];
bind server1.sio manager1.msio[1];
changeremoveclient;

symbol
j,k portset clientio;

condition c type(invoker())=client;
execute

/*unlink client connectors*/
forall j: managerportset(j)do

selectk: s linked(k,j) do
unbind j k

end;
deletek;

end.
link client1.leave removeclient;

end. /*client-server system*/

(b) text representation

Figure 14: Client-server example using Gerel

25

8.2 Aguirre-Maibaum Approach

Temporal logic is a variant of modal logic. The primary benefit of temporal logic is that it can be used to
describe event ordering without explicitly introducing time [CGP99]. Aguirre and Maibuam develop a spec-
ification language for reconfiguration of dynamic software architecture with a semantics based on first-order
and temporal logic. The language represents component types as classes, connector types as associations
and the overall architecture as a subsystem. One unfortunate aspect to this specification approach is that
hierarchical composition of components is not possible since subsystems are only composed of component
types not other subsystems.

A component type is represented as a class which consists of a class signatureC and a finite set of axioms
overC. Specifically, the class signature is [AM02b]:

• a set of read variables that allow components to access environment information

• a set of attributes of the component

• a set of actions, possibly with arguments, that take place in the component

The vocabulary of variables, attributes, and actions that are defined in the class signature can all be used
in the axioms. The axioms indicate how the possible actions will affect the attributes of the component. An
example of a temporal logic axiom is axiom 3 of thePrinter class in Figure 15. The axiom

∀s∈ string : load(s)→©(job = s)

states that if aload(s) action occurs then in the next states becomes the currentjob. The temporal logic
symbols used in this approach are: in the next state (©), until(U), and in some future state (3). In our
example we can see the© used to represent the next state.

Connector types are represented by associations which identify the participant component types in an
interaction as well as the connection between the components. The connection is specified as an action
synchronization definition. For example, in Figure 15 the definition

SRV.p-ready! PR.ready

means that thep-readyattribute ofSRVmust synchronize withreadyin thePRparticipant. A synchronization
can occur for both attributes and actions of classes.

Finally, subsystems are used to define the initial state of the topology and the reconfiguration operations
that can be applied to an already created state. The initial state consists of instantiations of both components
and connectors. The connectors accept component instances as arguments which allows for the system to be
linked together. Axioms are again used in the subsystem but instead of governing action behavior they govern
operation behavior involving the creation and deletion of architectural elements and the reconfiguration of
the architectural topology.

The Aguirre-Maibuam approach takes advantage of temporal logic for verification as well as specifica-
tion. In fact, both class and subsystem properties can be proved using Kripke structures. For example, the
property [AM02b]:

∀x,y : USES(x,y)→ [USES(x,y)U (y.job = [])]

can be verified to see if a printer that is used by a server will continue to be used by the server until the end
of the print job.

26

ClassPrinter
Exports print(), load(string), ready
Attributes

ready : boolean
job : string

Actions
print()
load(string)
print-el(char)

Axioms
1. BEG→ job = []
2. ∀s∈ string : load(s)→ job = []
3. ∀s∈ string : load(s)→©(job = s)
4. print()→ job 6= []
5. ∀ j ∈ string : print() ∧ job = j
→ print-el(head(j))

6. ∀ j ∈ string : print() ∧ job = j
→©(job = tail(j))

7. job 6= []→3(print())
8. ready= T↔ job = []

EndofClass

ClassServer
Exports enqueue(string), print()
Read Variables

p-ready: boolean
Attributes

p-queue : list(string)
Actions

enqueue(string)
print()
send(string)

Axioms
1. BEG→ p-queue= []
2. ∀s∈ string∀q∈ list(string)

: enqueue(s) ∧ p-queue= q
→©(p-queue= q++s)

3. print()→ p-queue6= []

4. ∀q∈ list(string) : print() ∧
p-queue= q→ [send(head(q)) ∧
©(p-queue= tail(q))]

5. p-queue6= []→¦(print())
6. ∀s∈ string : send(s)→ p-ready= T
7. ∀s∈ string : send(s)→ print()

EndofClass

AssociationUSES
Participants

SRV : Server
PR : Printer

Connections
SRV.p-ready! PR.ready
∀ j ∈ string : PR.load(j)

! SRV.send(j)
EndofAssoc

SubsystemMultiple-Printers
Initial State

S : Server
P1 : Printer
USES(S, P1)

Operations
change(y: Printer)
add(y: Printer)

Axioms
1. ∀s,p1,p2 : USES(s,p1)
∧ USES(s,p2)→ p1 = p2

2. ∀p : change(p)→©(USES(S,p))
3. ∀p : ¬change(p)→

[∀x,y : USES(x,y)↔©USES(x,y)]
4. ∀p : change(p)→ (S.p-ready= T)
5. ∀p : add(p)↔

[(¬Printer(p)) ∧©Printer(p)]
6. ∀s : Server(s)↔©Server(x)
7. ∀p : Printer(p)→©(Printer(p))

EndofSubsystem

Figure 15: Client-server example using Aguirre-Maibaum approach [AM02b]

27

8.3 ZCL Framework

CL is a distributed configuration language that has a model to support the following abstractions for the
representation of software architectures: modules (components), ports, instances, connections, and config-
urations. A system configuration, also known as a top component, is written in the CL language and can
consist of task components written in a programming language and composite components consisting of a
group of task components and possibly other composite components. In the CL model a dynamic software
architecture with these abstractions is constructed as follows [RJC00]:

1. A set of components are stored in the component library.

2. Components used in the current system are selected from the library.

3. Instances of the selected components are created.

4. The component instances are linked together.

5. The component instances are activated.

Systems developed using the CL model also have special components called configuration components
that, unlike task components, perform operations that affect the topology of the system [dP99]. Specifically

ExampleClientServer
ΞECL ExecState
ΞCL Connection

#children(Server)≥ 1
#children(Client) = 1
∃Srv: Nodes| Srv∈ children(Server)•Srv∈ ActiveInst∧ tab inst(Srv) 6= unborn∧
(∀Clt : Nodes| Clt ∈ children(Client)•∃conn: CL Connection•
conn= θCL Connection[receiver:= (Srv,provide),sender:= (Clt, require)]∧conn∈ connection)

Not ExampleClientServer
ΞECL ExecState
ΞCL Connection

#children(Server)≤ 1∨
#children(Client) 6= 1∨
∃Srv: Nodes| Srv 6∈ children(Server)•Srv∈ ActiveInst∨ tab inst(Srv) 6= unborn∨
(∀Clt : Nodes| Clt ∈ children(Client)•∃conn: CL Connection•
conn= θCL Connection[receiver:= (Srv,provide),sender:= (Clt, require)]∧conn6∈ connection)

CS=̂(ExampleClientServer∧Success)∨ (Not ExampleClientServer∧Failure)

Figure 16: State schema for the top component of a client-server example in ZCL [dP99]

28

configuration components can build the initial system, monitor the status of an existing configuration (us-
ing configuration operations), and reconfigure an existing system (using reconfiguration and synchronized
reconfiguration operations).

The representation of a system and the method of composing and reconfiguring a system form the CL
model. ZCL is based on this model and is specified in the Z language [dPJC98]. Z is a formal specification
language that is based on predicate logic and set theory [Dil94]. In the ZCL framework, Z schemas are
used to specify the CL model abstractions such as modules (components), ports, instances, connections,
and configurations. That is, programming languages are no longer used for the specification of the task
components and the CL language is no longer used for the specification of configurations and operations.

ZCL distinguishes between two types of schemas in the specification of dynamic architectures [dP99]:

1. State schemas:represent the topology or structure of architecture.

2. Operation schemas:represent the configuration and reconfiguration operations that can be applied by
a configuration component to the architecture.

An example of the top component in a client-server system can be seen in Figure 16. The client-server
system defined in the state schema has one client instance and possibly many server instances. Examples of
operation schemas can be found in [dP99].

The ZCL framework not only allows for the specification of dynamic software architectures but also the
specification of an execution model based on state machines. The execution model and a set of configuration
commands are used to govern the dynamic change. ZCL specifications can be used to simulate run-time
behavior and analyze pre-defined conditions and invariant constraints in the context of system configurations.
Currently, the simulation and analysis are done using the Z-EVES theorem prover [Saa99].

9 Other Formalisms

In this section we outline other formal specification approaches to dynamic software architectures that do
not have a semantics based on graph theory, process algebra, or logic. There are two approaches that fit this
category:C2SADEL and RAPIDE.

9.1 C2SADEL

The C2SADEL supports the specification of software architectures developed using the C2 architectural
style [OT98]. In the C2 architectural style, components have a defined top and bottom, have multiple threads
of control and encapsulate functionality and behavior (see Figure 17). Connectors also have a defined top
and bottom that represent component interaction. Asynchronous message passing is used for communica-
tion. An important property of the C2 architectural style is that it supports substrate independence. That is,
“a component within the hierarchy can only be aware of components ‘above’ it and is completely unaware of
components which reside at the same level or ‘beneath’ it” [OT98]. Component can invoke services offered
by components above via explicit request messages. Communication to components below occurs implicitly.
For example, a state change in a component is announced via a message broadcast to all components and
connectors joined to its bottom end.

In C2SADEL the formal specification of C2 architectures is based on four levels of abstraction [MTW96]:
component functionality, component interfaces, architectural configuration (and reconfiguration), and archi-
tectural style rules. First, we will outline the specification of component interfaces and architectural con-
figuration (and reconfiguration). Second, we will explain how all four levels of abstraction are used in the
context of a tool suite, ArchStudio.

29

S
1

S
2

M

S
3

C
2

C
1

Figure 17: A C2 client-server system

The above diagram outlines the structure of an example client-server system with a C2 architectural style.
Boxes represent components (C=client, M=manager, S=server), dark bars represent connectors, and the
lines represent communication links. Component-connector links as well as connector-connector links are
allowed provided that top-bottom pairs are connected. Component-component links are not allowed in a C2
architecture.

Component interfaces are defined in the Interface Definition Language (IDL). Figure 18 shows the def-
inition of theServercomponent’s interface in this language. Since each component has a top and a bottom,
interface requests and notification are defined for each. Note that for the top interface, requests go out and
notification come in while for the bottom interface, notifications go out and requests come in. The interface
can also specify some of the component behavior such as method invocations and message generation. This
behavior can be specified for the component at startup, cleanup and in response to received messages. In our
Serverexample we see that when them1message is received,method1is invoked and themethod1Called
event is always generated. An event can always be generated (always generated) or sometimes generated (
may generated) in response to a message being received.

Architectural configuration in a C2 system is specified in the Architecture Description Language (ADL).
This language supports the composition of component and connectors. For example, in Figure 18, we have
an architecture that consists of three components and two connectors. The topology section defines how the
components and connectors interconnect through top and bottom ports. Ports can also have different filter
mechanisms depending on the system. In our case we use theno filtering option which means that the port
passes messages through directly. Other options for filtering includenotification filtering, prioritized, and
msgsink. In [c2s] the architecture description includes the definition of a system that implements a particular
architecture. The definition uses theis bound to keyword to relate conceptual components defined in the
ADL with concrete component implementations.

The definition of components and connectors and the specification of the system topology allow for the
specification of static C2 systems. To specify reconfiguration the C2 architecture modification (sub)language
(AML) is used. The C2 AML supports the following reconfiguration operationsaddComponent, remove-
Component, weld, andunweld [MT00]. In the client-server example in Figure 18 we can see the specifica-
tion of a new manager component being added and connected to existing connectors as well as the existing
manager component being disconnected from connectors and removed from the system.

ArchStudio is a tool that allows the development of C2 architectures in Java that can be modified at
runtime [MT00]. ArchStudio links an architectural model specified in theC2SADEL’s IDL and ADL with a
Java implementation. Change scripts are specified in theC2SADEL’s AML that can be applied to the model.

30

IDL:

componentServer is
interface

top domain is
in

null;
out

null;
bottom domain is

in
...

out
method1Called (value: someval);
...

parameters
null;

methods
function method1() return someval;

...
behavior

received messagem1;
invoke methodsmethod1;
always generatemethod1Called

context
...

endServer;

componentManager is
...

endManager;

component...

ADL:

architecture ClientServerArchitectureis {
components{

top most
Server;

internal
Manager;

bottom most
Client;

}
connectors{

Conn1;
Conn2;

}
topology{

connectorConn1connections{
top ports {

Serverfilter no filtering ;
}
bottom ports {

Managerfilter no filtering ;
}

connectorConn2connections{
top ports {

Managerfilter no filtering ;
}
bottom ports {

Clientfilter no filtering ;
}

}
}

}

AML :

ClientServerArchitecture.AddComponent(Manager2);
ClientServerArchitecture.Weld(Conn1, Manager2);
ClientServerArchitecture.Weld(Manager2, Conn2);

ClientServerArchitecture.Unweld(Conn1, Manager);
ClientServerArchitecture.Unweld(Manager, Conn2);
ClientServerArchitecture.RemoveComponent(Manager);

Figure 18:C2SADEL client-server example (based on a stack example in [Med96, c2s])

31

Architecture Evolution

Manager

Change scripts

Design

environment

External

Analysis

Modules

Architectural

Model
Implementation

changes

implicitly affect

implementation
changes

applied to

model

Figure 19: ArchStudio tool suite [OT98]

The ArchStudio tool suite is developed for use with theC2SADEL and a Java implementation of a C2 system.

The user of the tool also has the option to use interactive tools such as Argo to specify reconfiguration. When
a reconfiguration is initiated, the architectural evolution manager determines if the change is valid. It checks
if the change violates the C2 architectural style. The reconfiguration is not applied to the model until the
evolution manager accepts the change. Once a change has been applied to the model, the change is applied to
the implementation. The relationship between the conceptual model and the implementation can be specified
in theC2SADEL using theis bound to keyword. Figure 19 shows the basic structure of ArchStudio.

9.2 RAPIDE

RAPIDE is an executable architecture definition language (EADL) [LV95]. In RAPIDE a system is specified
using five main sublanguages:

1. Types language.Used for the specification of module (i.e. component) interfaces.

2. Architecture language.Used for the declaration of a set of components and the specification of event
communication through a connection definition.

3. Specification language.Used to specify component behavioral constraints. Constraints can occur in
an interface or an architecture. Specifically, an interface constraint constrains the execution of modules
that implement the interface type while an architecture constraint is applied to the internal execution
of the architecture [LKA+95].

4. Executable language.Used for the specification of modules. A module is concurrent and reactive
- in response to an observed event a module will execute a portion of code and may also announce
additional events.

32

type Serveris interface
provides

...
requires

...
in action SR Receive
out action SA Send
behavior

...
constraint

...
endServer;

type Manageris interface
provides

function serverAvailablereturn Server;
function isCurrentreturn Server;

...
endManager;

type Client is interface
...

endClient;

with Client, Manager, Server;architecture ClientServer
is

?C: Client;
?M: Manager;
?D: Data;
S: Server;
...

connections
?C.CRSend(?D)to ?M.CR Receive(?D)
?M.CA Send(?D)to ?C.CA Receive(?D)
?M.SR Send(?D)where?M.serverAvailable(S)

||> S.SRReceive(?D)
S.SA Send(?D)where?M.isCurrent(S)

||> ?M.SA Receive(?D)
...

endClientServer;

Figure 20: RAPIDE client-server example usingwhereoperator

5. Pattern language.A pattern is specified to identify subsets of the partially ordered event set (poset)
of computations produced from simulation.

In RAPIDE a software architecture is called a framework and it is the first step in defining a RAPIDE

system. The framework consists of module interfaces and a specification of the communication in the form
of connector rules and communication constraints. A framework or architecture can be instantiated into a
system module-by-module [LKA+95].

If no module is currently available to instantiate the interface the module behavior can be specified in the
architecture language. Thus at any point in the instantiation, analysis can occur in the form of simulation and
conformance checking. The output resulting from a simulation is a poset− a record of the program behavior
that reflects the causal ordering of events.

Figure 20 shows an example of a client-server system in RAPIDE. The example has three types of
components (Server, Manager, Client) and defines an interface for each. The interface defines functions that
are to be provided and required by the interface, event actions that are generated (out action) and observed (in
action), behavior, and constraints. An architecture is also defined which connects the component instances.
Basic connections are defined by connecting the in and out action events of component interfaces using the
to operation. An instance can be explicitly named (e.g. S:Server) or a placeholder can be used to represent
an instance of a component type (e.g. ?C:Client).

One way to represent dynamism in RAPIDE is to use thewhere operator, from the pattern language, in
the connection section of an architecture definition [MT00]. For example in our client-server example the
following dynamic connection is defined:

?M.SR Send(?D)where?M.serverAvailable(S)||> S.SRReceive(?D)

33

CreateModule(type : ModuleType, parent : Event, name : String);
DeleteModule(module : Event);
CreatePathway(inputs : Pattern, outputs : Pattern, name : String);
DeletePathway(pathway : Event);
ChangeParent(module : Event, parent : Event);
AddPathwayInputs(pathway : Event, inputs : Pattern);
AddPathwayOutputs(pathway : Event, outputs : Pattern);
DeletePathwayInputs(pathway : Event, inputs : Pattern);
DeletePathwayOutputs(pathway : Event, outputs : Pattern);

Figure 21: Execution Architecture Events in RAPIDE

This connection defines that some manager which identifies that server S is available will connect to it. The
connection type is defined using a broadcast connection rule (||>) or alternatively, the connection rule could
also be a pipe (=>) [LV95].

A recent extension to RAPIDE provided support for component and connector addition and removal [VPL99].
Execution architecture events (Figure 21) were added to RAPIDE as primitive events. These events are treated
as being equivalent to normal events within RAPIDE. Specifically there is one event type for each of the basic
reconfiguration operations. Additionally, there is an event to change the parent of a module and four other
events which allow for changing the inputs and outputs of a connector without replacing the connector with
a new one.

10 Evaluation of Dynamic Software Architecture Specifications

10.1 Change Type

The type of change supported focused on the reconfigurations operations and architectural element variabil-
ity.

Our comparison of the change types supported by different dynamic architecture specification approaches
shows that the majority of approaches support all of the basic change operations. For example, inRAPIDE

there is one execution architecture event type for each of the basic reconfiguration operations. Approaches
that did not support all of the basic operations include several of the process algebra approaches (Darwin,
LEDA) that provide limited specification support, especially for the removal of architectural elements. The
limitation in these approaches appears to be a result of high-level design decisions, not limitations of the
underlying formalism. For example, Darwin was originally designed as a configuration language to be used
for distributed systems and the removal of components in such a system can still occur at the programming
language level.

Almost all of the approaches considered provide support for composite operations. An example of
support for composite operations can be found inC2SADEL where the AML can contain combinations of
AddComponent, RemoveComponent, Weld, andUnweld operations (see Figure 18). Note, thatC2SADEL

does not explicitly support the addition and removal of connectors. TheWeld andUnweld operations allow
for the reconfiguration of the communication links between components and connectors. Since multiple
components can be connected to the same connector we can see that connector removal, for example, occurs
implicitly when all components connected to a connector are unwelded.

Although most approaches support basic and composite operations, only a few of the approaches provide
full support for composite operation constructs such as sequencing, choice, and iteration. The scripts used

34

Table 3: Classification of formal specifications for dynamic software architectures based on type of change

in COMMUNITY and Gerel both provide these constructs.
In the context of architectural element variability many of the approaches did not support the use of

a variable set of architectural element types. The approaches that directly support variability in the set
of architectural elements are primarily distributed system configuration languages such as Gerel which were
designed to be used in actual implementations. In many of the other approaches designed for formal analysis,
variability of architectural elements can be simulated by expanding the set of fixed element types to include
elements that will be added at run-time.

A comparison of all of the approaches with respect to change type is summarized in Table 3.

10.2 Change Process

Our classification of dynamic architecture specification approaches focused on the four primary steps in the
change process: initiation, selection, implementation, and assessment.

Most approaches support internal initiation while some support external or both. In some of the ap-
proaches (e.g. LEDA) external initiation by an environment application can be simulated by abstracting one
level above the top of the architecture. At that level the architecture and environment application can each
exist as communicating components. An example of an approach that supported both internal and external
initiation was the Le Ḿetayer approach which provided this support through side conditions in the rewriting
rules. Approaches such as COMMUNITY and Gerel support both types of initiation through accompanying
tools instead of through the specification language. For example, a tool in the COMMUNITY approach can
allow for a change script to be executed after each computation step.

None of the approaches classified in this paper provided support for unconstrained run-time selection.

35

Table 4: Classification of formal specifications for dynamic software architectures based on change process

The selection in most approaches is limited. Specifically, most approaches use a selection approach where
one reconfiguration is pre-defined for a given situation. The exceptions are the CHAM and graph rewriting
approaches which allow for random selection of a reconfiguration if multiple possibilities exist, namely when
multiple left hand sides of change rules match part of the current architecture. An example of constrained
selection from a pre-defined set can be found in LEDA. Consider the client-server system in Figure 12. In
this example the client is attached to one of the two servers based on the result of a boolean condition.

The implementation of dynamic architectural reconfiguration in formal specification is primarily done us-
ing graph rewriting or process algebra. Several logic-based approaches also exist such as Gerel, the Aguirre-
Maibaum approach, and ZCL (also based on set theory).

The assessment used for the formal specification approaches varies from direct formal analysis, to sim-
ulation, to formal analysis after translation, to no assessment support. Since the approaches we consider all
have a formal semantics some analysis is possible and most of the approaches provide some analysis support.
For example, the ZCL approach provides simulation and direct formal analysis through the Z/EVES theorem
prover, while the Aguirre-Maibaum approach provides analysis of dynamic architectures using Kripke struc-
tures. Also, many of the configuration languages such asC2SADEL, Gerel, and Darwin allow for execution
as a means of assessment. Examples of approaches that allow for simulation include LEDA andRAPIDE.
LEDA can support prototype execution using aπ-calculus analysis tool such as the Mobility Workbench.
RAPIDE can produce a simulation result as a poset.

The results of the classification based on change process are summarized in Table 4.

36

10.3 The Infrastructure for Change

In the context of change infrastructure we summarize the type of management used, the separation of con-
cerns between change and computation, the architectural structure, and the architectural element representa-
tions.

The management used in most of the specification approaches is centralized, not distributed. This is
primarily because early types of dynamic architectural change such as ad-hoc and programmed often had
centralized management. Newer definitions of change, such as self-organising architectures, require dis-
tributed management.

An example of centralized management can be found in Dynamic Wright where reconfigurations are
specified in a configuror or in the Le Ḿetayer approach where reconfiguration rewriting rules are specified
in a coordinator. Some of the approaches such asC2SADEL and Gerel do not specify the management but
instead allow for the management to be determined in accompanying tools. Some of the approaches such
as the Hirsh et al. approach and the Distributed graph approach do not include explicit specification of
management. However, centralized management is implicit in these approaches since there is a single graph
on which rules can be applied. An example of distributed management can be found in the PiLar language.
PiLar allows for multiple components to have constraints which may specify reconfiguration.

Many of the approaches provide separation of concerns between the specification of computation and
change. Many provide some separation of the computation and change (partial separation) while others pro-

Table 5: Classification of formal specifications for dynamic software architectures based on change infras-
tructure

37

vide separation of concerns into different distinct parts of the specification (full separation). For instance, the
Aguirre-Maibaum approach features partial separation because axioms in the subsystem description describe
reconfiguration and axioms in the class (component) description describe behavior. The Distributed graph
approach, the Hirsh et al. approach, and the Le Métayer approach provide complete separation because the
rewriting rules specifying change are separate from the specification of behavior. Another example of com-
plete specification isC2SADEL where behavior is specified in the ADL and a programming language while
reconfiguration is specified in the AML.

In the context of architectural structure, the majority of approaches only represented the system architec-
ture and did not have any explicit representation of architectural styles. Exceptions include some of the graph
rewriting approaches such as the Le Métayer approach, Hirsh et al. approach, and CHAM that provide a set
of rules which define the architectural style for a class of systems. For example recall the creation CHAM
for client-server systems in Figure 8.

The representation of the components and connectors varies from approach to approach. For example,
the use of the COMMUNITY programming language in the COMMUNITY approach or the use of a notation
similar to CSP in the Le Ḿetayer approach are possible representations of architectural elements. Most
techniques represented components and connectors as first-class entities. The complete results of the classi-
fication based on the infrastructure for change, including the representation of components and connectors,
are summarized in Table 5.

11 Conclusions and Open Problems

In this paper we address the need for an evaluation of dynamic software architectures and present an eval-
uation approach that answers three fundamental questions related to dynamic architectural change: What
type of change is supported? What kind of process implements the change? What infrastructure is avail-
able to support the change process? The paper summarizes the result of classifying 14 of the most popular
approaches to dynamic architectural specification.

Our classification shows that the area of dynamic software architecture specification is well researched.
There exist a lot of different sometimes conflicting notations, concepts, and definitions. Although a variety
of approaches exist, there has been a lack of practical evaluation. Some exceptions include the configuration
programming approaches. Practical evaluation would aide in understanding what notations, concepts, and
definitions are important. For example, in Table 3 we see that a significant group of the approaches do not
support operation constructs in the specification of composite operations and the majority of approaches do
not support variable sets of architectural elements. More evaluation would inform us on the necessity of
support for these criteria. In Table 4 the fact that most approaches only support a pre-defined selection of
a reconfiguration operation may or may not be insufficient depending on how selection in practical systems
occurs. Finally in Table 5, many of the current approaches provide little direct support for analysis of
dynamic architectural change within a system. A practical evaluation of the approaches would help to better
understand what type of analysis is needed.

Another problem related to the study of practical examples is domain-specific concerns. The current
specification languages surveyed are applied to distributed systems or software architecture in general. Do-
main specific questions need to be addressed. For example, Are the approaches surveyed capable of speci-
fying domain-specific architectures (e.g. dynamic component-based web applications)?

Most of the specification languages classified represent structure, behavior, and reconfiguration primarily
in a text-based form. However, approximately half of the approaches also include either formal or informal
graphical representations. Many of the graphical representations used rely on sequences of static diagrams.
As the problem of dynamic architectural change becomes more understood we need to determine how to
best represent dynamic change graphically. The importance of graphical architecture specification is evident

38

in the additional support for static software architectures in UML 2.0. Gaining more insight into graphical
representations of dynamic architectures would be beneficial in extending an existing standard such as UML.

A final area that requires future research is the relationship between architectural structure and dynamic
change. Most of the current approaches focus on the relationship between a given system’s architectural
structure and dynamic change. The relationship between an architectural style and dynamic change is not
as well studied. Specifically in Table 5 we see that 4 of the approaches classified represent the architectural
structure explicitly while 11 do not. More work on this relationship between style and change could lead to a
better understanding of the limitations placed on change types by a given style. Furthermore, understanding
these limitations could provide opportunities for analysis that do not rely on a particular implementation.
Thus providing prescriptive change support instead of diagnostic change support.

12 Acknowledgements

This work benefited from the supervision of James Cordy and Juergen Dingel and from discussions with
Michel Wermelinger (Departmento de Informática, Universidade Nova de Lisboa, Portugal). This work was
funded by the Natural Sciences and Engineering Research Council of Canada (NSERC).

References

[ADG97] Robert Allen, Ŕemi Douence, and David Garlan. Specifying dynamism in software archi-
tecture. InProceedings of Foundations of Component-Based Systems Workshop, 1997.

[ADG98] Robert Allen, Ŕemi Douence, and David Garlan. Specifying and analyzing dynamic soft-
ware architectures.Lecture Notes in Computer Science, 1382, 1998.

[All97] Robert J. Allen.A Formal Approach to Software Architecture. PhD thesis, Carnegie Mellon
University, May 1997.

[AM02a] Nazareno Aguirre and Tom Maibaum. A temporal logic approach to component-based sys-
tem specification and reasoning. InProceedings of the5th ICSE Workshop on Component-
Based Software Engineering, Apr. 2002.

[AM02b] Nazareno Aguirre and Tom Maibaum. A temporal logic approach to the specification of
reconfigurable component-based systems. InProceedings of the17th IEEE International
Conference on Automated Software Engineering (ASE 2002), pages 271–274, Sept. 2002.

[AM03a] Nazareno Aguirre and Tom Maibaum. A logical basis to the specification of reconfigurable
component-based systems. InProceedings of Fundamental Approaches to Software Engi-
neering (FASE 2003), Apr. 2003.

[AM03b] Nazareno Aguirre and Tom Maibaum. Some institutional requirements for temporal reason-
ing about dynamic reconfiguration. InProceedings of Symposium on Verification: Theory
and Practice, Jul. 2003.

[And00] Jesper Andersson. Issues in dynamic software architectures. InProceedings of the4th

International Software Architecture Workshop (ISAW4), June 2000.

[BB92] Gérard Berry and Ǵerard Boudol. The chemical abstract machine. InSelected papers of the
Second Workshop on Concurrency and Compositionality, pages 217–248. Elsevier Science
Publishers Ltd., 1992.

39

[BMZ+04] Jim Buckley, Tom Mens, Matthias Zenger, Awais Rashid, and Günter Kniesel. Towards a
taxonomy of software change.Journal of Software Maintenance and Evolution: Research
and Practice, 2004. To appear.

[c2s] C2 software architecture description language. Web page:http://www.isr.uci.
edu/architecture/adl/SADL.html .

[CdlFBS01] Carlos E. Cuesta, Pablo de la Fuente, and Manuel Barrio-Solórzano. Dynamic coordina-
tion architecture through the use of reflection. InProceedings of16th ACM Symposium on
Applied Computing (SAC 2001), pages 134–140, Mar. 2001.

[CdlFBSB02a] Carlos E. Cuesta, Pablo de la Fuente, Manuel Barrio-Solórzano, and M. Encarnación Beato.
Coordination in a reflective architecture description language. InProceedings of the5th In-
ternational Conference on Coordination Models and Languages (COORDINATION 2002),
pages 141–148. Springer-Verlag, 2002.

[CdlFBSB02b] Carlos E. Cuesta, Pablo de la Fuente, Manuel Barrio-Solórzano, and M. Encarnación Beato.
Introducing reflection in architecture description languages. InProceedings of Working
IEEE/IFIP Conference on Software Architecture (WICSA 2002), pages 143–156, 2002.

[CGP99] Edmund Clarke, Orna Grumberg, and Doron Peled.Model Checking. The MIT Press, 1999.

[CHK+01] Ned Chapin, Joanne E. Hale, Khaled Md. Khan, Juan F. Ramil, and Wui-Gee Tan. Types
of software evolution and software maintenance.Journal of Software Maintenance and
Evolution: Research and Practice, 13(1):3–30, Jan./Feb. 2001.

[Cle96] Paul Clements. A survey of architecture description languages. InProceedings of the8th

International Workshop on Software Specification and Design (IWSSD’96), Mar. 1996.

[CPT98a] Carlos Canal, Ernesto Pimentel, and Jos M. Troya. Compatibility, inheritance and extension
of π-calculus agents. Technical Report LCC-ITI-98-13, Universidad de Málaga, June 1998.

[CPT98b] Carlos Canal, Ernesto Pimentel, and Jos M. Troya. Aπ-calculus semantics for an architec-
ture description language. Technical Report LCC-ITI-98-17, Universidad de Málaga, April
1998.

[CPT99] C. Canal, E. Pimentel, and J. M. Troya. Specification and refinement of dynamic soft-
ware architectures. InSoftware Architecture, pages 107–126. Kluwer Academic Publishing,
February 1999.

[Dar] The Darwin compiler v1.0.2. Web page:http://www.doc.ic.ac.uk/˜igeozg/
Project/Darwin/DarwinSyntax.pdf .

[Dar97] The Darwin language, version 3d. Web page:http://www-dse.doc.ic.ac.uk/
Software/Darwin/darwin-lang.pdf , Sept. 1997.

[DC95] Thomas R. Dean and James R. Cordy. A syntactic theory of software architecture.Special
Issue on Software Architecture, IEEE Transactions on Software Engineering, 21(4):302–
313, January 1995.

[Dil94] Antoni Diller. Z: An Introduction to Formal Methods. John Wiley and Sons, 1994.

[dP99] Virginia Carvalho Carneiro de Paula.ZCL: A Formal Framework for Specifying Dynamic
Software Architectures. PhD thesis, Federal University of Pernambuco, 1999.

40

[dPJC98] Virginia C. de Paula, G. R. Ribeiro Justo, and P. R. F Cunha. Specifying dynamic dis-
tributed software architectures. InProceedings of the XII Software Engineering Brazilian
Symposium, pages 7–22. IEEE Computer Society Press, Oct. 1998.

[dPJC00] Virginia C. de Paula, G. R. Ribeiro Justo, and P. R. F Cunha. Specifying and verifying
reconfigurable software architectures. InProceedings of the5th International Symposium
on Software Engineering for Parallel and Distributed Systems (PDSE 2000), pages 21–31,
Jun. 2000.

[End94] M. Endler. A language for implementing generic dynamic reconfigurations of distributed
programs. InProceedings of12th Brazilian Symposium on Computer Networks, pages 175–
187, 1994.

[EW92] M. Endler and J. Wei. Programming generic dynamic reconfigurations for distributed ap-
plications. InProceedings of the International Workshop Configurable Distributed Systems,
pages 68–79, 1992.

[FM97] Jose Luiz Fiadeiro and T. S. E. Maibaum. Categorical semantics of parallel program design.
Science of Computer Programming, 28(2-3):111–138, 1997.

[FWM99] Jośe Luiz Fiadeiro, Michel Wermelinger, and José Meseguer. Semantics of transient con-
nectors in rewriting logic. InProceedings of the1st Working International Conference on
Software Architecture, Feb. 1999.

[GMK02] Ioannis Georgiadis, Jeff Magee, and Jeff Kramer. Self-organising software architectures for
distributed systems. InProceedings of the1st Workshop on Self-Healing Systems, pages
33–38, 2002.

[GMW97] David Garlan, Robert T. Monroe, and David Wile. Acme: An architecture description inter-
change language. InProc. of CASCON’97, pages 169–183, Nov. 1997.

[HIM98] Dan Hirsch, Paola Inverardi, and Ugo Montanari. Graph grammars and constraint solving
for software architecture styles. InProceedings of the3rd International Software Architec-
ture Workshop (ISAW3), pages 69–72, November 1998.

[HIM99] Dan Hirsch, Paola Inverardi, and Ugo Montanari. Modeling software architectures and
styles with graph grammars and constraint solving. InProceedings of the1st Working IFIP
Conference on Software Architecture (WICSA1), pages 127–142, February 1999.

[Hir03] Dan Hirsch. Graph Transformation Models for Software Architecture Styles. PhD thesis,
Universidad de Buenos Aires, 2003.

[HM99] Dan Hirsch and Ugo Montanari. Consistent transformations for software architecture
styles of distributed systems.Electronic Notes in Theoretical Computer Science, 28:23–
40, September 1999.

[HM00] Dan Hirsch and Ugo Montanari. Higher-order hyperedge replacement systems and their
transformations: Specifying software architecture reconfigurations. In H. Ehrig and
G. Taentzer, editors,Proceedings of the Joint APPLIGRAPH/GETGRATS Workshop on
Graph Transformation Systems (GRATRA 2000). Satellite Event of the European Joint Con-
ference on Theory and Practice of Software (ETAPS 2000), March 2000.

41

[HNS99] C. Hofmeister, R. Nord, and D. Soni. Describing software architecture with UML. In
P. Donohoe, editor,Proceedings of Working IFIP Conference on Software Architecture,
pages 145–160. Kluwer Academic Publishers, Feb. 1999.

[IW95] Paola Inverardi and Alexander L. Wolf. Formal specification and analysis of software ar-
chitectures using the chemical abstract machine model.IEEE Transactions on Software
Engineering, 21(4), 1995.

[IWY97] P. Inverardi, A.L. Wolf, and Daniel Yankelevich. Checking assumptions in component dy-
namics at the architectural level. InProceedings of the 2nd International Conference on
Coordination Models and Languages (COORD ’97), pages 46–63, 1997.

[KM98] J. Kramer and J. Magee. Analysing dynamic change in software architectures: A case study.
In Proceedings of the4th International Conference on Configurable Distributed Systems,
pages 91–100, 1998.

[Kra90] Jeff Kramer. Configuration programming - a framework for the development of distributable
systems. InProceedings of the IEEE Internatinal Conference on Computer Systems and
Software Engineering (COMPEURO 90), pages 374–384, May 1990.

[LKA +95] David C. Luckham, John L. Kenney, Larry M. Augustin, James Vera, Doug Bryan, and
Walter Mann. Specification and analysis of system architecture using Rapide.IEEE Trans-
actions on Software Engineering, 21(4):336–355, Apr. 1995.

[LS80] B. P. Lientz and E. B. Swanson.Software Maintenance Management: A Study of the Main-
tenance of Computer Application Software in 487 Data Processing Organizations. Addison-
Wesley, 1980.

[LV95] David C. Luckham and James Vera. An event-based architecture definition language.IEEE
Transactions on Software Engineering, 21(9):717–734, Sept. 1995.

[MBZR03] Tom Mens, Jim Buckley, Matthias Zenger, and Awais Rashid. Towards a taxonomy of soft-
ware evolution. InProceedings of2nd International Workshop on Unanticipated Software
Evolution (USE 2003), Apr. 2003.

[MDEK95] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed software architec-
tures. In W. Schafer and P. Botella, editors,Proceedings5th European Software Engineering
Conference (ESEC 95), volume 989, pages 137–153, Sitges, Spain, 1995. Springer-Verlag,
Berlin.

[MDK93] Jeff Magee, Naranker Dulay, and Jeffrey Kramer. Structuring parallel and distributed pro-
grams. 8(2):73–82, Mar. 1993.

[MDK94] Jeff Magee, Naranker Dulay, and Jeff Kramer. A constructive development environment
for parallel and distributed programs.IEE/IOP/BCS Distributed Systems Engineering,
1(5):304–312, September 1994.

[Med96] Nenad Medvidovic. ADLs and dynamic architecture changes. InJoint Proceedings of the
2nd International Software Architecture Workshop (ISAW-2) and International Workshop on
Multiple Perspectives in Software Development (Viewpoints ’96) on SIGSOFT ’96 Work-
shops, pages 24–27. ACM Press, 1996.

42

[Mét96] Daniel Le Métayer. Software architecture styles as graph grammars. InProceedings of
the4th ACM SIGSOFT Symposium on Foundations of Software Engineering, pages 15–23.
ACM Press, 1996.

[MK96] Jeff Magee and Jeff Kramer. Dynamic structure in software architectures. InProceedings
of the4th ACM SIGSOFT Symposium on Foundations of Software Engineering, pages 3–14.
ACM Press, 1996.

[MKS89] Jeff Magee, Jeff Kramer, and Morris Sloman. Constructing distributed systems in Conic.
IEEE Transactions on Software Engineering, 15(6), 1989.

[MORT96] Nenad Medvidovic, Peyman Oreizy, Jason E. Robbins, and Richard N. Taylor. Using object-
oriented typing to support architectural design in the C2 style. InProceedings of the4th ACM
SIGSOFT Symposium on Foundations of Software Engineering, pages 24–32. ACM Press,
1996.

[MPW92a] Robin Milner, Joachin Parrow, and David Walker. A calculus of mobile processes, part I.
Journal of Information and Computation, 100:1–40, 1992.

[MPW92b] Robin Milner, Joachin Parrow, and David Walker. A calculus of mobile processes, part II.
Journal of Information and Computation, 100:41–77, 1992.

[MT00] Nenad Medvidovic and Richard N. Taylor. A classification and comparison framework for
software architecture description languages.Software Engineering, 26(1):70–93, 2000.

[MTW96] N. Medvidovic, R. N. Taylor, and E. J. Whitehead, Jr. Formal modeling of software architec-
tures at multiple levels of abstraction. InProceedings of the California Sofivare Symposium
(CSS’96), April 1996.

[OGT+99] P. Oreizy, M.M. Gorlick, R.N. Taylor, D. Heimhigner, G. Johnson, N. Medvidovic,
A. Quilici, D.S. Rosenblum, and A.L. Wolf. An architecture-based approach to self-adaptive
software.Intelligent Systems, IEEE, 14(3):54–62, May/Jun. 1999.

[OMT98] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. Architecture-based runtime
software evolution. InProceedings of the International Conference on Software Engineer-
ing, pages 177–186, Apr. 1998.

[Ore96] Peyman Oreizy. Issues in the runtime modification of software architectures. Technical
Report UCI-ICS-96-35, University of California, Aug. 1996.

[Ore98] Peyman Oreizy. Issues in modeling and analyzing dynamic software architectures. InPro-
ceedings of the International Workshop on the Role of Software Architecture in Testing and
Analysis, June-July 1998.

[OT98] Peyman Oreizy and Richard N. Taylor. On the role of software architectures in runtime
system reconfiguration. InProceedings of the International Conference on Configurable
Distributed Systems, page 61. IEEE Computer Society, 1998.

[Rap96] The Rapide 1.0 full syntax reference manual. Web page:http://pavg.stanford.
edu/rapide/language.html , Sept. 1996.

[RJC00] Nelson S. Rosa, George R. R. Justo, and P. R. F. Cunha. Incorporating non-functional
requirements into software architectures. InProceedings of the IPDPS Workshop on Formal
Methods for Parallel Programming (FMPPTA 2000), May 2000.

43

[Saa99] Mark Saaltink. The Z/EVES 2.0 user’s guide. Technical Report TR-99-5493-06a, ORA
Canada, Oct. 1999.

[SG95] Mary Shaw and David Garlan. Formulations and formalisms in software architecture. In
Computer Science Today, pages 307–323. 1995.

[SG02] Bradley Schmerl and David Garlan. Exploiting architectural design knowledge to support
self-repairing systems. InProceedings of the14th International Conference on Software
Engineering and Knowledge Engineering, pages 241–248, 2002.

[SNH95] Dilip Soni, Robert L. Nord, and Christine Hofmeister. Software architecture in industrial
applications. InProceedings of the17th International Conference on Software Engineering,
pages 196–207, 1995.

[Szy03] Clemens Szyperski. Component technology: what, where, and how? InProceedings of the
25th International Conference on Software Engineering, pages 684–693, 2003.

[TGM98] Gabriele Taentzer, Michael Goedicke, and Torsten Meyer. Dynamic change management
by distributed graph transformation: Towards configurable distributed systems. InProceed-
ings of the6th International Workshop on Theory and Application of Graph Transformation
(TAGT’98). Springer, Oct. 1998.

[TGM99] Gabriele Taentzer, Michael Goedicke, and Torsten Meyer. Dynamic accommodation of
change: Automated architecture configuration of distributed systems. InProceedings of the
14th IEEE International Conference on Automated Software Engineering, Oct. 1999.

[vG87] R.J. van Glabbeek. Bounded nondeterminism and the approximation induction principle in
process algebra. InProceedings 4th Annual Symposium on Theoretical Aspects of Computer
Science (STACS 87), Feb. 1987.

[vL00] Axel van Lamsweerde. Formal specification: a roadmap. InProceedings of the Conference
on The Future of Software Engineering, pages 147–159. ACM Press, 2000.

[VM94] Björn Victor and Faron Moller. The Mobility Workbench — a tool for theπ-calculus. In
Computer Aided Verification (CAV’94), volume 818 ofLecture Notes in Computer Science,
pages 428–440. Springer-Verlag, 1994.

[VPL99] James Vera, Louis Perrochon, and David C. Luckham. Event-based execution architectures
for dynamic software systems. InProceedings of the1st Working IFIP Conference on Soft-
ware Architecture, pages 22–24, San Antonio, Texas, 1999. IEEE.

[Wer98a] Michel Wermelinger. A simple description language for dynamic architectures. InProceed-
ings of the 3rd International Software Architecture Workshop, pages 159–162, 1998.

[Wer98b] Michel Wermelinger. Towards a chemical model for software architecture reconfiguration.
IEE Proceedings - Software, 145(5):130–136, October 1998.

[Wer99] Michel Wermelinger.Specification of Software Architecture Reconfiguration. PhD thesis,
Universidade Nova de Lisboa, September 1999.

[WF98] Michel Wermelinger and José Luiz Fiadeiro. Connectors for mobile programs.IEEE Trans-
actions on Software Engineering, 24(5):331–341, May 1998.

44

[WF99] Michel Wermelinger and José Luiz Fiadeiro. Algebraic software architecture reconfigura-
tion. In Proceedings of the7th European Software Engineering Conference and7th Sympo-
sium on Foundations of Software Engineering (ESEC/FSE’99), pages 393–409, 1999.

[WF02] Michel Wermelinger and José Luiz Fiadeiro. A graph transformation approach to software
architecture reconfiguration.Science of Computer Programming, 44(2):133–155, August
2002.

[WLF01] Michel Wermelinger, Antnia Lopes, and José Luiz Fiadeiro. A graph based architectural
(re)configuration language. InProceedings of the Joint8th European Software Engineering
Conference and9th Symposium on the Foundations of Software Engineering, pages 21–32.
ACM Press, 2001.

45

A A Proposed Evolution Taxonomy

Object of Change

(WHERE)

CHANGE

Temporal Properties

(WHEN)

Change Support

(HOW)

System Properties

(WHAT)

Propagation

Impact

Granularity

Artifact

Time of change

Change history

Change frequency

Degree of

automation

Degree of formality

Process support

Change type

Safety

Openness

Activeness

Availability

Figure 22: Dimensions of software change

The above diagram outlines the proposed evolution taxonomy in [BMZ+04]. The approach is based on the
mechanism of changes and organizes properties of change into four dimensions: the where, when, how and
what of change. The properties for each dimension are listed in the boxes at the bottom of the diagram.

Buckley et al. approach developing a taxonomy for change from a mechanisms perspective [MBZR03,
BMZ+04]. Their proposed taxonomy does not concentrate onwhya change occurs but instead focuses on
thehow, what, when, andwhereof an evolutionary change (see Figure 22).

Temporal properties such as time of change, change history, and change frequency definewhena change
occurs. Object of change properties such as artifacts, granularity, impact, and change propagation define
wherea change occurs. System properties definewhatkinds of changes can occur. A system is defined by
availability, activeness, openness, and safety properties. Finally, change support properties such as degree of
automation, degree of formalism, process support, and change type definehowa change occurs.

This proposed taxonomy was designed for evolution in a general sense and thus is able to identify dif-
ferences between a variety of different evolution systems and tools. For example, in [BMZ+04] it is used
to compare a version control system, a browser that supports refactoring transformations, and self-managing
servers. However, when the scope of comparison is restricted to run-time evolution at the architectural level,
the differences become more subtle and harder to distinguish. In fact, many of the key properties in the
proposed taxonomy such as the time of change, the artifacts, and the granularity become fixed (see Table 6).
Overall, many properties related to thewhenandwhereof architectural changes differ very little from one
dynamic architecture to another. Furthermore, it remains difficult to answer the three fundamental questions
presented in Section 1 using the remaining properties that do vary. Therefore, in order to evaluate dynamic
architectures a refinement of this taxonomy would be required.

46

General Evolutionary Change Dynamic Architectural Evolu-
tionary Change

Temporal Properties (when)
time of change compile-time, load-time, run-time run-time
change history none, sequential, parallel changes may be executed in parallel

to minimize disruption time
change frequency continuously, periodically, arbitrar-

ily
self-adaptive systems tend to
change continually, while ad-hoc
changes occur arbitrarily

Object of Change(where)
artifact source code, file, executable code,

etc.
executable code (or components,
connectors)

granularity several methods, several classes,
file, system, etc.

systems, components, connectors

impact local source code changes, global
changes to any artifacts, etc.

possibly global changes to other
component and connectors

System Properties(what)
availability permanently available or not often permanently available
activeness reactive, proactive some reactive systems, all proactive
openness built in support for extensions run-time infrastructure required for

dynamic change means most sys-
tems at least partially open - not
closed

Change Support(how)
automation automated, partially automated,

manual
automated, partially automated

formality ad-hoc or formal mechanism often formal
process support activities in change process sup-

ported by automated tools
configuration

change type structural, semantics-modifying,
semantics-preserving

the same possibilities, but within
structural changes one must dis-
tinguish which operators (addition,
etc.) and operands (architectural el-
ements) are allowed

Table 6: Relationship between the proposed evolution taxonomy described in [BMZ+04] when applied to
evolutionary change in general and evolutionary change in dynamic software architectures.

47

