
RICARDO HENRIQUE GRACINI GUIRALDELLI

ALGORITHMIC GRAPH UNIFICATION
AND SIMULATIONS FOR HAPLOTYPE

NETWORKS

A thesis submitted to the Polytechnic

School of University of São Paulo in

partial fulfillment of the requirements

for the Degree of Master of Science in

Electrical Engineering.

São Paulo

2012

RICARDO HENRIQUE GRACINI GUIRALDELLI

ALGORITHMIC GRAPH UNIFICATION
AND SIMULATIONS FOR HAPLOTYPE

NETWORKS

A thesis submitted to the Polytechnic

School of University of São Paulo in

partial fulfillment of the requirements

for the Degree of Master of Science in

Electrical Engineering.

Concentration Area:

Digital Systems

Advisor:

Ricardo Luis de Azevedo da Rocha

São Paulo

2012

To my lovely family: Luiz, Maria Helena and Francisco.

ABSTRACT

This research dealt with the unification of graphs applied to the problem of
haplotype networks. From the low reliability found in networks generated by
the traditional algorithms, it was necessary to introduce a new proposition to
improve the outcome. For proper evaluation of the results obtained by the new
algorithm, a formal-theoretical framework for generalization of haplotype net-
works related solutions, making use of parameterized functions easily represented
through LISP-like functional languages. Seeking for real case application of the
theory developed, a structure of simulation and testing were developed to build
genetic code strings randomly or even parameterized.

The generated tests have allowed to observe the expected improvement in the
algorithm, especially for cases of low mutation. The framework for simulation
and testing was extremely useful and easy to use, making itself a product to be
distributed to the academic Biology community.

RESUMO

Esta pesquisa lidou com a unificação de grafos aplicada ao problema das
redes haplot́ıpicas. A partir da baixa confiabilidade encontrada nas redes ger-
adas pelos algoritmos tradicionais, foi necessário introduzir uma nova proposição
para melhorar o resultado obtido. Para esta avaliar o resultado obtido pelo novo
algoritmo, desenvolveu-se um arcabouço teórico-formal possibilitando a general-
ização de soluções relativas a redes haplot́ıpicas através de aplicação de funções
parametrizáveis, facilmente representada através de linguagens funcionais no es-
tilo LISP. Para aplicação em problemas reais, desenvolveu-se estrutura de sim-
ulação e testes que constrói cadeias genéticas de maneira aleatória ou ainda
parametrizável.

Os testes gerados permitiram observar a melhoria esperada no algoritmo,
especialmente para os casos de baixa mutação. O arcabouço de simulação e
testes mostrou-se extremamente proṕıcio e de fácil utilização, o que o torna, em
si mesmo, uma ferramenta a ser disponibilizada para a comunidade acadêmica da
área de Biologia.

CONTENTS

List of Figures

Symbols

Abreviations

Thanks

1 Introduction 13

1.1 Objectives . 15

1.1.1 General Objectives . 15

1.1.2 Specific Objectives . 16

2 Phylogeography 17

2.1 Techniques . 18

2.1.1 Molecular Markers . 19

Mitochondrial DNA (mtDNA) 19

2.1.2 Haplotype Networks . 21

Methods . 23

3 Adaptivity 26

3.1 Adaptive Devices . 27

3.1.1 Adaptive Framework . 27

3.1.2 Mathematical Formalism 29

3.1.2.1 Classical Formalism 30

3.1.2.2 Algebraic Adaptivity 31

External Elements 31

Adaptive Algebra 32

3.1.2.3 Models’ Equivalence 33

Runtime Dynamics 33

One Adaptive Function per Transition 34

Turing Powerful . 34

4 Graphs 36

5 Graphs Unification 41

5.1 Algorithm . 45

5.1.1 Algorithm Input Restrictions 45

5.1.1.1 Nonexistence of Zero-Type Haplotype 46

5.1.1.2 Edition Distances Between Haplotypes Are Rep-
resented As Edge Weight 48

5.1.1.3 There Are No Two Isomorphic Graphs 49

5.2 Algorithmic Steps . 50

5.2.1 Main Algorithm . 51

5.2.2 Vertices Function . 52

5.2.3 Minimum Weighted Edge 54

5.3 Applied Adaptive Theory . 55

5.4 Final Graph G . 61

5.5 Example . 62

Composition of sets V and E 62

Covering all possible edges 63

Finding a minimum weighted edge 64

Composing the final graph 64

6 Data Analysis and Results 66

6.1 Developed Tools . 67

6.1.1 Data Generation Tool . 67

Group of Haplotypes Function 68

Single Haplotype Generator Function 68

6.1.2 Data Analysis Tool . 70

6.2 Results . 72

6.2.1 Numerical Analysis . 73

6.2.2 Graphical Analysis . 74

7 Concluding Remarks 77

7.1 Contributions . 78

7.2 Future Work . 79

7.3 Conclusion . 80

Bibliography 81

LIST OF FIGURES

1 Mitochondrial DNA, in its circular shape. (WIKIPEDIA, 2012) . . 20

2 Haplotype network built from data of table 1 showing four loops. 23

3 One of the possible haplotype trees built from data of table 1 and
figure 2. 24

4 A 1-step network built by statistical parsimony method (TEMPLE-

TON; BOERWINKLE; SING, 1987). 25

5 A previous F1 and a posterior F2 adaptive functions attached to
a traditional subjacent device (with a transition highlighted in red). 28

6 A representation of a traditional computational devices space with
many different instances. Highlighted nodes represent visited sub-
jacent devices. 29

7 Euler’s drawing of the Königsberg bridges.(EULER, 1736) 36

8 Graph representation of the Königsberg bridges. 37

9 Graph G = {V,E}. 37

10 Graph G′ = {V ′, E ′}. 38

11 Graph G′ with weighted edges. 39

12 A K5 graph. 39

13 Tree T derived from figure 12. 40

14 Data-flow of data analysis algorithms (left to right). 43

15 Haplotype network presenting a zero-type haplotype highlighted
(TEMPLETON; BOERWINKLE; SING, 1987). 47

16 Haplotype network presenting a zero-type haplotype as black ver-
tices (TEMPLETON; BOERWINKLE; SING, 1987; TEACHER; GRIF-

FITHS, 2011). 47

17 Example of unweighted haplotype networks representations 49

18 Example of weighted haplotype networks representations 49

19 Graphs belonging to the space G of graphs. 62

20 Final graph G in normal representation (20a) and with edges col-
ored representing the original graphs they come from (20b). . . . 65

21 Graphical User Interface for both versions of the data generation
tool. 68

22 Graphical User Interface for the data analysis tool. 72

23 Minimum spanning tree extract from the final graph G of the real
data from (CABANNE; SANTOS; MIYAKI, 2007; CABANNE et al., 2008). 75

24 Minimum spanning tree extract from the mutation graph GM of
the real data from (CABANNE; SANTOS; MIYAKI, 2007; CABANNE

et al., 2008). 75

25 Minimum spanning tree extract from the recombination graph GR

of the real data from (CABANNE; SANTOS; MIYAKI, 2007; CABANNE

et al., 2008). 76

SYMBOLS

(G,w) weighted graph, p. 34
Φ space of elementary adaptive actions, p. 26
Ψ general selection function, p. 55
Σ alphabet, p. 27
∅ empty set, p. 27
ε empty string, p. 27
〈rule〉 pattern of a rule, p. 26
G set of graphs, p. 46
F take first element function, p. 55
R take rest of the elements function, p. 55
∂ set of rules of the computational device, p. 27
φ elementary adaptive function, p. 26
ψ selection function, p. 54
AA posterior adaptive function, p. 26
AD adaptive device, p. 26
AM adaptive mechanism, p. 26
BA anterior adaptive function, p. 26
E set of edges, p. 33
f+ foreign-transition addition operator, p. 28
f− proper-transition remotion operator, p. 28
G graph, p. 33
M computational device (machine), p. 26
MST minimum spanning tree, p. 39
NDi non-adaptive subjacent computational device, p. 26
NR non-adaptive rules, p. 26
Q set of states, p. 27
S proper-search operation, p. 27
S search function, p. 53
SG general search function, p. 54
V set of vertices, p. 33
w weight function, p. 34

ABREVIATIONS

ABC approximate Bayesian computation, p. 11
BNF Backus-Naur Form, p. 65
CSV comma-separated values, p. 67
DNA deoxyribonucleic acid, p. 10
GUI graphical user interface, p. 64
mtDNA mitochondrial DNA, p. 16
NCPA nested clade phylogeographic analysis, p. 11
RNA ribonucleic acid, p. 17
SNP single-nucleotide polymorphism, p. 17

THANKS

After three (very intesive) years, it’s time to admit that the present work,
although references just one author — in this case, me — actually is a composition
from ideas of dozens gifted minds that, somehow decisively, guided the research
to its final results; in the next few lines some of them are remembered, but many
will left in anonymity simply due to my failing memory; for these, my sincere
apologies.

First of all, I would like to thank my parents, Luiz Antonio Guiraldelli and
Maria Helena César de Camargo Bellaz Guiraldelli, and my brother, Francisco
Augusto César de Camargo Bellaz Guiraldelli, which raised me with strong values
and taught me that knowledge is the most valuable asset, one that can never be
stolen from its “owner”. They also supported me in the bad moments and kept
me motivated to continue the graduate studies.

Following, I thank professor Ricardo Luis de Azevedo da Rocha, Reginaldo
Inojosa da Silva Filho, professor Cristina Yumi Miyaki and Fábio Sarubbi Raposo
do Amaral for guiding me in the whole research process, frequently and continu-
osly discussing every and each detail that arose in the development of the work
as well as yielding valuable insights in those moments that any progress seemed
impossible; advising has taken a higher sense under their guidance.

I could not forget the contributions of Ana Paula Brambila, Átila Madureira
Bueno, Antonio Henrique Della Colleta Herbst, Antonio Mauro Saraiva, Bárbara
Dariano Silva, Celso Vital Crivelaro, Cristiano Magalhães Panazio, Daniel Assis
Alfenas, Danilo Picagli Shibata, Diego Paolo Ferruzzo Correa, Flávio Nishikawa
Vilani, Francisco Javier Ramirez Fernandez, Geovandro Carlos Crepaldi Firmino
Pereira, Graziela Martins Pedro Dias, Gregory John Chaitin, Isabela Rocha
Schelim, João José Neto, Joaquim Aparecido Machado, José Roberto Castilho
Piqueira, L. Lacey Knowles, Leia Sicilia, Lina Alexandrino dos Santos, Luis Ed-
uardo Soares Netto, Lúıs Emilio Cavechioli Dalla Valle, Marie-Anne Van Sluys,
Paulo Sérgio Licciardi Messeder Barreto, Pedro Bruno Pereira de Brito, Rafael
Augusto Ricco, Raphael Nunes da Motta, Rodolpho Henrique Orlovsky Eckhardt,
Rubens Chamtob Levy and many others that, unfortunately, my mind has failed
to remember but they will be immortalized in the permanent thoughts derived
from this work.

13

1 INTRODUCTION

Since the invention of the “code of life” — the deoxyribonucleic acid (DNA)—

by James Watson and Francis Crick in the 1950s, the emphasis of the biologists

and other researchers on the seek for comprehension of its properties and oper-

ation has been increasing considerably, driving to the emergence of many ideas

about the information that could be extracted from the sequences of nucleobases.

The scientific community, soon, has got the possession of the principal knowledge

of this molecule — the inheritance capability — and started to pursuit all rela-

tionship associated with this characteristic, as well as deducting others because

of this information flow through generations (CALLADINE et al., 2004; PEREIRA,

2005).

The profile of genetic modification and the information flow from ancestors to

descendants was promptly perceived as an useful way for extracting the historical

outline of generations and, with slight improvements, for the entire community.

The improvement of the comparison techniques, the addition of new variables

in the analysis, the increase of acquired genetic sequences from field explorations

and, most important, the demand for state-of-the-art methods for comprehension

of environment and the evolutionary trail has created new research fields in biol-

ogy such as phylogenetics (DAWKINS, 2004) and, recently, phylogeography(AVISE,

2007).

Working with a large amount of data for proper comparison, these new de-

14

veloped areas started to require computational efficient algorithms1 for providing

fast results on the correlation of the data, moving away from qualitative only

analysis and providing a quantitative one(AVISE, 2007; KNOWLES, 2002), as well

as developing optimized visualization approaches for the number of sequences

and values in possession. In an attempt to fill this technological gap, concurrent

methods such as nested clade phylogeographic analysis (NCPA) (TEMPLETON;

BOERWINKLE; SING, 1987; TEMPLETON, 1998) and approximate Bayesian com-

putation (ABC) (BEAUMONT; ZHANG; BALDING, 2002) were designed and rapidly

established themselves as tools to support research (TEMPLETON, 2008).

As a side effect to the extensive application of the algorithmic techniques

in the research fields, a rivalry among them has grown and their (statistical)

validity were put to test (BEAUMONT; PANCHAL, 2008; KNOWLES, 2008; PETIT,

2008b, 2008a; POSADA; CRANDALL; TEMPLETON, 2006; TEMPLETON, 2010, 2008)

and the scientific community, now splitted in different fronts, each defending

their preferred procedure, presented, in general, uncomfortable with the existing

approaches, requiring evolution in the available ones, as well as the development

of new ones (KNOWLES, 2002).

Following this trend, some initiatives have risen from diverse areas, from

the expected one, biology (PANCHAL, 2008; POSADA; CRANDALL; TEMPLETON,

2000; TEACHER; GRIFFITHS, 2011; TEMPLETON et al., 2005; WOOLLEY; POSADA;

CRANDALL, 2008), to pure mathematics (MANOLOPOULOU, 2008), and knowledge

areas as statistics, probabilities, Bayesian networks, graph theory and theoretical

computer science have been evoked for improving the analysis tools in these

1An algorithm is a mathematical representation (GRAHAM; KNUTH; PATASHNIK, 1994;
LEWIS; PAPADIMITRIOU, 1997), under a specific language, of some repetitive set of operations.
In this sense, it may be considered a formal representation of specific thoughts. In the context
of the current work, though, it is considered as the representation of a software in a general way.
A formal representation will be considered the one based on common mathematical notation
excepting algorithmically, such as those used on function, graph, (adaptive) automata theories
and etc. . .

15

prominent research fields in the frontier of genetics and evolution.

1.1 Objectives

Although the acquisition and processing of genetic code has evolved signifi-

cantly in the last years, the information extraction from the “raw data” is largely

limited by the incipient methods for its analysis; even more severe, it has been

diagnosed the way data is modeled may negatively influence the analysis and

inference on the collected data (JOLY; STEVENS; VUUREN, 2007).

Thus, in an attempt to minimize the concerns of the community (JOLY;

STEVENS; VUUREN, 2007; WOOLLEY; POSADA; CRANDALL, 2008), the present

work has the objective of improving the data treatment before the inference

algorithms, during the process of composition of the haplotype network, includ-

ing the foundation concepts of algorithmic information theory (FORTNOW, 2001;

GRÜNWALD; VITÁNYI, 2010; LI; VITÁNYI, 1997; NANNEN, 2003) such as Occam’s

razor and Epicurus’ principle, as some graph theory concepts (BOLLOBAS, 1998;

BONDY; MURTY, 2008; DIESTEL, 2010).

1.1.1 General Objectives

To introduce other models for haplotype modification using haplotype net-

work, driving to a new network topology that will provide more (and previously

hidden) information to algorithms such as NCPA or ABC for proper inference of

the historical evolutionary events.

A formal (and, hence, mathematical) definition of the network will also be

considered, intending to establish a permanent bridge between this segment of

Biology and Mathematics.

16

1.1.2 Specific Objectives

In order to demonstrate the validity of the research developed, a number of

software were developed for data simulation, execution of the proposed technique

and comparison of the final results, both simulated and real ones.

For this objective, both the algorithm and the formal specification of the

main application make use of adaptive technology(FILHO; ROCHA, 2011) for the

handling of the dynamic entities (such as graphs) that may be assembled by the

methods proposed in this work.

17

2 PHYLOGEOGRAPHY

Phylogeography is a research field from biology that studies the biological, ge-

ographical and historical processes from particular species (i.e. intra-specifically).

It derives from or maintains strong intersection with coalescent theory, phyloge-

netics, population biology, biogeography and (molecular) ecology.

Particularly, Avise (AVISE, 2007) defines phylogeography as

[...] a field of study concerned with the principles and processes

governing the geographical distributions of genealogical lineages, es-

pecially those that occur within a species (i.e., intra-specifically).

The term was first referenced — and, also, its formalization as research field

— in the 1987 article (AVISE et al., 1987), being classified as a recent biology

area; notwithstanding, the phylogeography origins are dated to the end of 1970’s

(AVISE, 2007).

The phylogeography field was naturally developed from the necessity of under-

standing why some populations of determined species have a number of distinct

biological features than others of the same species. Although many environmen-

tal factors motivate these distinctions, the geographical ones are prominent — as

latitude and longitude, among others.

Once the study subject is the variation among populations of particular

species, it is also necessary to consider the temporal axis since the most accepted

18

evolutionary argument (DAWKINS, 2004) has this component in its structure; this

way, phylogeography contemplates geo-temporal events.

As an illustrative example, the Homo sapiens species is taken. It is (natively)

distributed among five of the six continents1 of the Earth with very distinct

characteristics. Analyzing the DNA of sample populations from each localization,

there is the possibility to trace the geographical origin of the species, as well as

its emigration route, and understand the evolutionary characteristics that made

possible the survival of the species under the particular environmental restrictions.

In fact, a similar study found the Mitochondrial Eve and traced the human origin

to Africa (CANN; STONEKING; WILSON, 1987).

2.1 Techniques

As a scientific field — according to the scientific method — phylogeography

follows certain set of rules in the process of studying the target populations.

The recurrent and systematic use of these rules led to development of a range of

techniques, some of them still used nowadays, others abandoned.

The techniques evolved not only following the expansion of knowledge, such

as biological, chemical or even computational, but also as a requisite for proper

and detailed analysis of the population history. In this sense, two different branch

of techniques evolved separately: data extraction and data analysis.

The first is concerned to collect data with as much information about the

population as the current technology is able to analyze. Thus, the extraction of

information started as the detailed phenotypic observation (TEMPLETON; BOER-

WINKLE; SING, 1987) but reached the complex molecular analysis involving several

molecular markers and clocks (AVISE, 2007)(FREELAND, 2005); the ease of DNA

1It is known that Antarctic continent do not have native humans. (ANISIMOV; FITZHARRIS,
2011)

19

sequencing, in particular, has been a great evolutionary force in data extraction

techniques using molecular analysis.

The latter branch, data analysis, comprises procedures such as nested clade

phylogeographic analysis (NCA or NCPA) (TEMPLETON, 2008, 2004, 1998; TEM-

PLETON; BOERWINKLE; SING, 1987; TEMPLETON; SING, 1993) and haplotype net-

works and trees(TEMPLETON et al., 2005). This class of methods are used to

model and evaluate data in such a structure that the draw of conclusions over

the data set is made systematically and straightforward by an actor with a body

of knowledge sufficient for inference2.

2.1.1 Molecular Markers

Molecular markers are known portions of DNA that belong to a specific

genome. It means that a molecular marker is a DNA sequence or gene with

distinguish characteristics that is used to identify a group as a cell, a tissue or a

species.

Molecular markers are used because their sequences and functionality — as

well as other particular properties — are known and easily recognized in the

whole species samples.

In phylogeography, the most used molecular markers are the mitochondrial

DNA, also known as mtDNA, and the nuclear markers.

Mitochondrial DNA (mtDNA) Mitochondrion is a cytoplasmic organelle

existent at all eukaryote cells, i.e.all cells with complex structures and membranes,

as an organized nucleus. It is mainly responsible for cellular respiration (oxidative

2Actor, in the preceding context, is the one who performs an action(BOOCH; RUMBAUGH;

JACOBSON, 2005). By this definition, an actor may be a human, but not indispensably; in
many science fields, such as computer science’s artificial intelligence subject, the actor is not a
human, but a computer program.

20

metabolism), but also for other activities, as cellular differentiation and death

(apoptosis).

Differently from the other organelles, mitochondrion presents — along with

chloroplast and the nucleus — in its inner structure, some DNA strand called

mitochondrial DNA (mtDNA). This has circular shape (figure 1), similar to the

bacterial DNA (JUNQUEIRA; CARNEIRO, 2008).

Figure 1: Mitochondrial DNA, in its circular shape. (WIKIPEDIA, 2012)

Under the phylogeographical perspective, the mtDNA is very interesting be-

cause of its diverse features. Firstly, mitochondria are transmitted only by mater-

nal lineage3, enabling a more reliable and robust construction of genetic descent

tree; these properties are reached because of the low mtDNA recombination rate4.

3It is known, though, that some species transmit their mitochondria through the paternal
lineage; e.g. some conifers (MOGENSEN, 1996) and mussels (CAO; KENCHINGTONA; ZOUROS,
2004).

4It is important to note that the low mtDNA recombination rate is due the fact that mtDNA
comes uniquely from the maternal lineage and, for this reason, any recombination that may

21

Nevertheless, the excess of DNA strand stability is harmful for genetic vari-

ability analysis, the study subject of phylogeography; but mtDNA is considerably

susceptible to mutations due to spacial proximity shared with oxygen, a highly

reactive chemical compound, and also the lower capability of self-regeneration

compared with nuclear DNA (FREELAND, 2005)[33].

At last, mtDNA is significantly smaller than nuclear DNA — 180,000 times

smaller, approximately — with only 16,569 nitrogenous base5 pairs (bp) in op-

position to the almost 3× 109 bp of nuclear DNA (ANDERSON et al., 1981).

2.1.2 Haplotype Networks

From all the data collected from phylogeographers, there are special DNA

sequences called haplotypes that ease the research work. These special sequences

are very similar among them except by some particular single-nucleotide poly-

morphisms (SNPs) that are statistically associated (The International HapMap Con-

sortium, 2003); this similarity provides (i) genetic stability (ii) with sample differ-

entiation through minor mutations (iii) along with smaller nucleotides sequences

to analyze, desired properties for a detailed but feasible phylogeography study.

The haplotypes are fundamental data in phylogeography study, allowing a

wide range of conclusions provided directly from the molecular data (i.e. DNA

strands) of the sampled populations.

Although the haplotypes have a great potential of providing important in-

sights on data, their proper analysis can be compromised if immediate and rustic

methods are applied; among a set of reasons, the variable size of the haplotypes

occur is not visible because all of them happen with the same genetic sequences, not a foreign
one (e.g. paternal mtDNA).

5The nitrogenous bases are the fundamental composing elements of DNA and ribonucleic acid
(RNA). there are five different kinds of nitrogenous bases, named adenine, cytosine, guanine,
thymine (only presented in DNA molecules), and uracil — the latter, exclusively for RNA
structures — following specific interconnection patterns with the objective of joining the DNA
double helix.

22

Haplotype Sequence
H1 A T T G G
H2 A C T G G
H3 A C T G C
H4 A T T C G
H5 A T T A G
H6 A T C C G
H7 A C C C C
H8 A T T A C
H9 A C T A C

Table 1: Set of nine 5-bp long haplotypes (named H1 to H9).

base pairs sequences, that can be of few dozen to thousands, is a remarkable

one: considering a not so long haplotype sequence of 400 base pairs in a set of

20 haplotypes, there would be 8 × 103 base pairs to be compared every time an

information should be extracted.

With the desire to simplify the data analysis, a graphical approach was pro-

posed, objectively representing the relationship among its internal elements. This

graph is called haplotype network.

Haplotypes networks are graphical representations of the sampled haplotypes

in a study and of the number of mutations that differs one haplotype of an-

other; typically, the haplotypes are represented by circles whose diameters are

proportional to the sampled frequency of each haplotype and an in-circle label

representing the haplotype; a number n of mutations that differ two haplotypes6

are represented as an edge interconnecting two circles with n− 1 dashes perpen-

dicular to the edge.

The concept of network is associated to existence of cycles (also called loops

by biologist) in the graphical representation.

The greatest advantage of a graphical representation over string analysis is

6The mutations that differs two haplotypes is tighted with the edition distance in bioinfor-
matics. (GUSFIELD, 1997)

23

H1 H2H5

H4

H3

H6

H9

H7

H8

|

|

|

Figure 2: Haplotype network built from data of table 1 showing four loops.

that the relationship information among the haplotypes are faster and easily

highlighted; still, frequency information can also be contrasted through the circle

diameter. However, the loops that may exist in the graph brings complications to

data analysis since it may signal existence of genetic recombination and, hence,

a direct history of population in a cladogram style.

In an attempt to transform the haplotype in a cladogram, algorithms that

extracts trees from graphs are applied, like Prim’s algorithm (TEACHER; GRIF-

FITHS, 2011; CORMEN et al., 2010); so, a historical perspective is extracted from

the haplotype network.

Methods There are a number of methods for haplotype networks construction

(LABARRE, 2007), with extensive benchmark evaluations among them (WOOL-

LEY; POSADA; CRANDALL, 2008).

One of the most used methods is the statistical parsimony (TEMPLETON,

2008, 2004, 1998; TEMPLETON; BOERWINKLE; SING, 1987; TEMPLETON; SING,

1993), implemented on the TCS software (CLEMENT; POSADA; CRANDALL, 2000);

laid on the concept of finding the most simple relationship among the haplotypes

24

H1 H2H5

H4

H3

H6

H9

H7

H8

|

Figure 3: One of the possible haplotype trees built from data of table 1 and
figure 2.

— a statistical attempt to apply the Occam’s razor concept in the networks build-

ing — statistical parsimony follows four basic steps (TEMPLETON; BOERWINKLE;

SING, 1987):

1. Calculate, for every haplotype pair, the probability parsimony PJ=1 that

differ by only one site (substitution).

2. Based on the results of the previous step (1-step network), search for single

recombination that can resolve homoplasies.

3. Increase j by one and calculate Pj and merge the (j-1)-step networks with

j-step networks until all haplotypes are in a single haplotype network or two

or more non-overlapping networks are left.

4. If two or more networks are left without being connected, estimate the

minimum number of 95% (or more) probability non-parsimonious changes

and connect them.

The statistical parsimony method is, generally, the best method available for

haplotype networks and tree building (WOOLLEY; POSADA; CRANDALL, 2008);

25

Figure 4: A 1-step network built by statistical parsimony method (TEMPLETON;

BOERWINKLE; SING, 1987).

however, it still presents weakness, particularly at sequences with high frequency

of recombination appearance.

26

3 ADAPTIVITY

There are numbers of different computational models, each with particular

characteristics that ease the modeling or resolution of certain kinds of problems;

among those, one could cite the finite automata, pushdown automata and Turing

machines (LEWIS; PAPADIMITRIOU, 1997).

Although these models are widespread used in most computational applica-

tions, they are rigidly and formally defined to give solutions to well-defined prob-

lems; any deviation to the expected inputs, if not foreseen and pre-programmed,

leads to a malfunction of the system, compromising results and efforts — com-

putational or not. There are computational contexts, typically from machine

learning but not restricted to, that require runtime modifications in their inter-

nal structure; in these subjects, the training step is the one where unexpected

conditions are verified for posterior parameters reconfiguration with the system

not running — realizing the learning, from the machine, of previously unknown

inputs (RUSSELL; NORVIG, 2003).

The kind of model stated above has been working and in use for years, some

of them with computational power for solving problems in the limit of the hu-

man capacity of understanding(TURING, 1936; LEWIS; PAPADIMITRIOU, 1997;

SIPSER, 2005); however, their notation are not sufficiently adequate to express

self-modifying (at runtime) machines, creating the need of a new modeling sys-

tem. Observing this need, some formalisms were proposed (SHUTT, 1995)(NETO,

27

1993b), among them the adaptive automata(NETO, 2001), the first of the adaptive

devices.

3.1 Adaptive Devices

An adaptive device is the one that can change its internal structure in run-

time, adapting its behavior to the different stimuli it receives — usually external

ones. It differs from the standard computational devices since these are fixed

instances of pre-determined algorithm. Such self re-modeling property provides

the adaptive device the ability to shape itself up to broader classes of problems

and, hence, be used to solve problems with dynamic properties and higher model

complexity (ROCHA; NETO, 2000).

Clearly a strong formalism permeates the definition of an adaptive device.

But, for proper comprehension of the concept, an adaptive framework equivalent

model was developed to didactically and correctly explain the concept.

3.1.1 Adaptive Framework

An equivalent model for adaptive devices is a conceptual adaptive frame-

work, surrounding a standard computational device (e.g. deterministic finite au-

tomaton), compounded of two elements with the ability to modify the subjacent

(standard) device. These elements, representing modification functions called

adaptive functions, act in the structural elements and rules of the inner device in

well-defined circumstances: before a standard device computational step or after

it.

During the execution of a computational device, there are transitions among

states marking the computational progress; these transitions follow a certain set

of rules usually defined over the relation of states and stimuli. An instance of

28

F1 F2

Figure 5: A previous F1 and a posterior F2 adaptive functions attached to a
traditional subjacent device (with a transition highlighted in red).

this relation — in general, defined as a tuple (actual state, stimuli) — is called a

configuration, that can be understand as a picture of the actual situation of the

device.

The transition between one configuration c1 = (q1, w) to one c2 =

(q2, x), represented as c1 ` c2 or (q1, w) ` (q2, x) (LEWIS; PAPADIMITRIOU,

1997)(HOPCROFT; ULLMAN; MOTWANI, 2003), is called a computational step and

represents the basic unit of progress in the computational process of the device.

Attached to each computational step, there are adaptive functions that can

alter the structural elements of the device with the goal to adapt it to new stim-

uli. These modifications happen before or after the computational step for main-

tenance of the traditional behavior of the underlying device under the formal

concepts it is defined.

The potential adjustments of adaptive functions concern the states and the

rule elements of one device, making possible the recognizement and treatment

of and adaption for new inputs and situations(NETO, 2001); these results are

possible through the composition of the adaptive functions using addition and

remotion actions over the set of structural elements (states or rules) along with

a search function to find the specific elements in the sets.

The application of the adaptive functions, as described above, constructs, at

29

each alteration of the inner device, a new standard computational device within

the same class of the previous subjacent one, only with slight differences on their

sets of structural elements — but with a traditional concept of algorithm still

being executed.

In this sense, the adaptive functions do not act as modifying functions, but

solely as selection functions in a space of computational devices(ROCHA, 2008;

KAUFFMAN, 1993), defining the best ones to execute a particular computational

step based on the triggering stimuli1.

Figure 6: A representation of a traditional computational devices space with
many different instances. Highlighted nodes represent visited subjacent devices.

3.1.2 Mathematical Formalism

The adaptive devices were proposed, originally, in (NETO, 1993a) with a well-

spring mathematical formalism that has been evolving in two different branches:

the classical formalism (NETO, 2001), based on set and automata theory, and

a direct heritage of the first formalism proposed; and the algebraic one (FILHO;

ROCHA, 2011), influenced by mathematical algebra, modeling ideas and control

theory.

For historic and clarification reasons, both formalisms are explained; since

they require a previous knowledge on formal languages theory, supportive ref-

erences on this subject are provided at (LEWIS; PAPADIMITRIOU, 1997; SIPSER,

1This concept of “walk on a space” is also present in biology (in the context of adaptivity
(KAUFFMAN, 1993)) and complex systems areas.

30

2005; ROZENBERG; SALOMAA, 1997).

3.1.2.1 Classical Formalism

Definition 1. Let an adaptive device AD = (ND0, AM), which ND0 is a non-

adaptive initial subjacent computational device; AM ⊆ BA × NR × AA is an

adaptive mechanism; BA (anterior adaptive function) and AA (posterior adaptive

function) are adaptive functions; and NR is the set of all non-adaptive rules for

AD. (NETO, 2001)

Elementary adaptive actions are primitive editing functions that compose

every adaptive function. There are three different elementary adaptive actions

acting on parameter pattern matching (as formally defined in definition 2): (i) in-

spection (or rule-searching); (ii) deletion (or rule-erasing); and (iii) insertion (or

rule-inserting). (NETO, 2001)

Definition 2. Let 〈rule〉 be the pattern of a rule defined for the ordinary encap-

sulated device (〈rule〉 ∈ δ(Mi)) , then the elementary adaptive actions are:

(i) inspection actions, represented by ?[〈rule〉], which returns all the rules of

the computing function matching the pattern rule;

(ii) deletion actions, represented by −[〈rule〉], which deletes all the rules of the

computing function matching the pattern rule;

(iii) insertion actions, represented by +[〈rule〉], which inserts the pattern rule to

the set of rules of the computing function of the device.

(ROCHA, 2009)

Definition 3. Let Φ be a space of elementary adaptive actions and M be the one

of ordinary devices. An adaptive function is defined as a set {φ0, . . . , φn}, with

31

φi ∈ Φ, 0 ≤ i ≤ n and n ∈ N, that, when instanced and executed as an adaptive

action, changes the underneath device Mi to Mj, {Mi,Mj} ⊆ M. (ROCHA, 2009)

The application of the concepts above were first to define adaptive systems

and are enough (as shown in definition 1) to specify an adaptive computational

device, as an adaptive automata. Nonetheless, the way it represents an adaptive

device may become uncomfortable for newcomers or, even, be too complicate to

express some kinds of adaptive systems. This way, following the paradigms open-

ing that exists in theoretical computer science (LEWIS; PAPADIMITRIOU, 1997;

SIPSER, 2005; CARNIELLI; EPSTEIN, 2009), a new representation pattern was pro-

posed as detailed in section 3.1.2.2.

3.1.2.2 Algebraic Adaptivity

An alternative formalism, more elegant and clear, was proposed in (FILHO;

ROCHA, 2011), strongly influenced by (mathematical) algebra and theory of com-

putation, turning the adaptive formalism easier to implement and understand.

Nonetheless, the algebra consider solely the adaptive automata devices.

In a functional composition notation, this branch of adaptivity theory reaches

a formal closure not defined before in the field and intrinsically presents software

development guidelines for functional programming such as LISP.

The algebraic adaptivity is based on external and internal elements. The ex-

ternal elements are those used to assist the operations and functions; the internal

ones are intrinsic to the algebraic approach.

External Elements Before the presentation of the adaptive algebra, an “ex-

ternal framework” of functions is defined to support some operation of the former,

those not concerning the modification of the subjacent device.

32

Definition 4. Let S be the proper-search operation defined as S : Q ∪ ∅ × Σ ∪

{ε} ×Q ∪ ∅ ×M0 7→ {Q× Σ ∪ {ε} ×Q} ⊆ {∂ ∪ ∅}.

The proper-search operation has eight possibilities:

S(qi, a, qj,M
0) = {(qi, a, qj) : (qi, a, qj) ∈ ∂} (3.1a)

S(qi, qj,M
0) = {(qi, α, qj) : (qi, α, qj) ∈ ∂} (3.1b)

S(qi,M
0) = {(qi, α, qj) : (qi, α, qj) ∈ ∂} (3.1c)

S(qj,M
0) = {(qi, α, qj) : (qi, α, qj) ∈ ∂} (3.1d)

S(qi, a,M
0) = {(qi, a, qj) : (qi, a, qj) ∈ ∂} (3.1e)

S(a, qj,M
0) = {(qi, a, qj) : (qi, a, qj) ∈ ∂} (3.1f)

S(a,M0) = {(qi, a, qj) : (qi, a, qj) ∈ ∂} (3.1g)

S(M0) = ∂ (3.1h)

Definition 5. A non-pertinence identification operation is an external element

of the adaptive algebra such that:

N(δ,M0) =

δ ⇔ δ /∈ ∂

∅ ⇔ δ ∈ ∂

Definition 6. A start identification function is the one that returns the start

state of a transition, i.e. for a transition δ = (q′, α, q′′), A(δ) = q′.

Definition 7. A finish identification function is the one that returns the end state

of a transition, i.e. for a transition δ = (q′, α, q′′), Ω(δ) = q′′.

Adaptive Algebra The adaptive algebra is focused exclusively in the modi-

fication operations

Definition 8. A proper-transition remotion operator is defined as f−δprok
M0 =

f−(δprok
,M0) = (Q, q0, E,Σ, rem(∂, δprok

)), with δprok
∈ δ̂pro and δ̂pro =

33

(δpro
1
, . . . , δprom

).

Definition 9. A foreign-transition addition operator is defined as f+
δfork

M0 =

f+(δfork
,M0) = (ins(ins(Q, q′), q′′), q0, E,Σ, ins(∂, δfork

)), with δfork
∈ δ̂for and

δ̂for = (δfor
1
, . . . , δforn

).

Definition 10. Let F = (f−, f+) and φ = (δ̂pro, δ̂for). An adaptive function is

defined as FφM
0 = F(φ,M0) = F−

δ̂pro
F+

δ̂for

M0.

The application of operation F into machine M0 (definition 10) follows the

function composition below, describing the remove (equation 3.2) insertion trans-

formations (equation 3.3).

F−
δ̂pro

M0 , F−(δ̂pro,M
0) = (f−δprom

◦ f−δprom−1

◦ . . . ◦ f−δpro2

◦ f−δpro1

)M0 (3.2)

F+

δ̂for

M0 , F+(δ̂for,M
0) = (f+

δforn
◦ f+

δforn−1

◦ . . . ◦ f+
δfor2

◦ f+
δfor1

)M0 (3.3)

3.1.2.3 Models’ Equivalence

A full-equivalence between the classical and algebraic formalisms exists and is

formally presented at (FILHO; ROCHA, 2011), enabling the application of known

theoretical results reached from a model to another.

Runtime Dynamics The runtime self-adaptive and, as a consequence, dy-

namic behavior of the adaptive devices is the greatest advantage of this class of

computational devices against Turing machines, pushdown automata, finite state

automata or other traditional devices.

34

This property is equally inherited by both formalisms, along with the addi-

tional easy and powerful expressiveness characteristic of both of them.

One Adaptive Function per Transition The classical adaptive definition,

as represented in figure 5 and stated in definition (NETO, 2001), declares the

existence of two adaptive functions — pre- and post-transition adaptive functions

— for proper modifications of the subjacent device.

However, it was demonstrated that any adaptive device with pre- or post-

transition adaptive function has an equivalent one with only one adaptive function

for each transition, with the property of execution either before or after the

subjacent machine transition (ROCHA; NETO, 2005).

That result is used in the core concepts of the algebraic adaptive model, since

an unique adaptive function per subjacent transition is allowed in that model

(FILHO; ROCHA, 2011).

Turing Powerful The device proposed by Alan Turing (TURING, 1936) —

the so-called Turing machine — is the theoretical foundation for computation,

presenting widely recognized interesting characteristics; among many of them,

its most prominent is the ability to recognize (and, in particular cases, only ac-

cept) the broadest set of languages among all the computational devices. Over

Turing machine fundamental concepts as effectively calculable (or computable)

procedure and computational complexity are defined (TURING, 1936; LEWIS; PA-

PADIMITRIOU, 1997; SIPSER, 2005; CARNIELLI; EPSTEIN, 2009); particularly, the

Turing-Church thesis also derives from this conceptual device, stating that if

some algorithm exists to calculate some method, it can be executed by a Turing

machine and, equivalently, by λ-calculus or recursively-defined functions.

From the information stated by the Turing-Church thesis (and the knowledge

35

that this device accepts all classes of languages in the Chomsky hierarchy (LEWIS;

PAPADIMITRIOU, 1997)) follows the conclusion that Turing machine is the most

“powerful” computational device and every machine with the same computational

power is called Turing powerful or Turing complete.

Any device modified by the adaptive formalism presented in sections 3.1.2.1

and 3.1.2.2, even the simplest one as a deterministic finite state automa-

ton, has the same computational power of a Turing machine (ROCHA; NETO,

2000)(ROCHA, 2011); i.e. recognizes (or accepts) the same languages a Turing

machine can recognize (or accept), being, hence, a Turing powerful device.

36

4 GRAPHS

When the seven bridges of Königsberg problem dared the mathematicians in

the 18th century, Leonhard Euler presented an elegant negative resolution to it,

as well as presented to the mathematics community a new study field composed

of simple visual structures with high potential of representativeness called graph

theory (HAWKING, 2005).

Figure 7: Euler’s drawing of the Königsberg bridges.(EULER, 1736)

Graphs are visual representations made of vertices and edges, simple and

natural components present in many scratches of modeling. Through these two

elements, unimaginable equivalences between real world problems and drawings

become possible; with some characteristics extension, as vertices shape and edged

labels, the number of equivalences grows exponentially.

The expressiveness power of graphs are increased with some modifications in

their compounding elements, as adding labels to edges, color edges and vertices,

37

A

B

C

D

a b

c d

e

f

g

Figure 8: Graph representation of the Königsberg bridges.

among others.

Since graph theory is a discrete mathematics instance, it is well defined

through rigorous formalisms presented below.

Definition 11. A graph is an ordered pair G = (V,E), where V is a set of

vertices and E is one of edges, with E ⊆ [V]2 and V ∩ E = ∅. (DIESTEL, 2010)

As an example, let G be the graph presented in figure 9. At the ex-

ample, the set of vertices V = {A,B,C,D,E} and the set of edges is

E = {{A,B}, {A,C}, {A,E}, {B,C}, {C,D}, {C,E}}.

C

A B

DE

Figure 9: Graph G = {V,E}.

It is important to note that the names of the vertices are not restricted to

single letters of the alphabet. In fact, for expressiveness increase, they are labeled

in easy-for-understanding way such as figure 10, where the graph G′ = {V ′, E ′}

has V ′ = {Campinas,Ribeirão Preto,Rio de Janeiro, São Paulo, Sorocaba} and

E ′ = {{São Paulo, Sorocaba}, {São Paulo, Campinas}, {São Paulo, Rio de

Janeiro}, {Sorocaba, Campinas}, {Campinas, Ribeirão Preto}, {Campinas, Rio

de Janeiro}}.

38

Campinas

São Paulo Sorocaba

Ribeirão PretoRio de Janeiro

Figure 10: Graph G′ = {V ′, E ′}.

All the graphs presented so far are undirected1 and unweighted graphs

(BONDY; MURTY, 2008)[31](DIESTEL, 2010)[28], i.e. the edges do not flow in a

certain ordering as well as there are no real number associated to them.

Definition 12. A weighted graph, denoted (G,w), with w : E 7→ R, is one which

a real value (weight) is attributed to each edge of the graph. (BONDY; MURTY,

2008)

The usage of weight in the edges add new information in the graph data pool,

clarifying new relations among the elements, as priority, probability, required

constraint or others; it enriches the model, turning possible the information ex-

traction in an optimized way.

An instructive example derives from figure 10. In this figure, each city is

represented as a vertex and the relation among them through the set E ′ of edges.

It is clear, looking at this graph, that a person leaving from Sorocaba reaches

Rio de Janeiro either going to São Paulo or Campinas, but no information is

provided regarding which one is the shortest path to go.

If a function w that weights each edge with the distance, in kilometers, be-

tween the vertices is attached to the graph G′ — as can be seen in figure 11

— the acquisition of the shortest path information is rapidly provided. At the

Sorocaba–Rio de Janeiro travel, the shortest path is Sorocaba–São Paulo–Rio de

Janeiro which is 12 kilometers shorter than Sorocaba–Campinas–Rio de Janeiro

one by the graph in figure 11.

1The notion of directed graph is not relevant in the scope of this research work.

39

Campinas

São Paulo Sorocaba

Ribeirão PretoRio de Janeiro

109

102
95

226

472

446

Figure 11: Graph G′ with weighted edges.

The figure 10 (or figure 11) presents a graph containing some vertices not

connected to others. Notwithstanding, there is a special type of graph called

complete graph in which every vertex is connected to the others, except itself.

Definition 13. A complete graph is an undirected one which G =

(V,E)|{ei, ej} ∈ E and ei 6= ej. If |V | = n, G is represented as Kn. (BONDY;

MURTY, 2008)

Corollary 1. Given a Kn complete graph, its number of edges |E| = n!
2!×(n−2)!

=

n×(n−1)
2

.

A

B

C

D E

Figure 12: A K5 graph.

Definition 14. In a graph G = (V,E), two vertex ν ′, ν ′′ ∈ V are adjacent if

∃{ν ′, ν ′′} ∈ E. (BONDY; MURTY, 2008)

Definition 15. A vertex degree dG(ν ′) of a graph G, for any ν ′ ∈ V , is the

quantity of edges {ν ′, ν ′′} ∈ E,∀ν ′′ ∈ V . If there is an edge in which ν ′′ = ν ′, that

edge is counted twice.

40

A complete graph, by definitions 14 and 15, can be described as the one

which every vertex is adjacent to all other vertices (except itself) and, hence, any

dG(ν) = |V | − 1.

Definition 16. Given a sequence (ν0, ν1, · · · , νk) of non-repeating vertices and

k ≥ 2, for νi, 0 ≤ i ≤ k. Let νi be adjacent to νi+1 for 0 ≤ i < k and νk be

adjacent to ν0. A graph C = (V,E) with V =
⋃

{νi}, 0 ≤ i ≤ k, is called a cycle.

(BONDY; MURTY, 2008)

Definition 17. A graph T without cycles (acyclic) and connected is called a tree.

(BONDY; MURTY, 2008)(DIESTEL, 2010)

A

B

C

D E

Figure 13: Tree T derived from figure 12.

41

5 GRAPHS UNIFICATION

There is so much skepticism over the results of automatic methods for data

analysis in the biological field, specially because there are lots of unknown vari-

ables even for (human) experts and many relationships usually show up after long

studies, experiments, field and laboratory work. In phylogeographic studies, it

may get even worse since the data under analysis are highly (and necessarily)

attached with geographical, geological, evolutive and genetics events.

On the other side, with the improvement in and extensive use of data collect-

ing techniques, the massive amount of raw data to analyze in a current routine

research becomes intractable under the treatment of a (or even several) human

specialist; in this situation, an automated information extraction system could

work several times faster than human beings and point out hidden relationships

among data collected through extensive application of diverse algorithms sup-

ported by its architecture, i.e. its big memory and processor speed.

Seeking for a solution intersecting both worlds, some algorithms were pro-

posed using, in most cases, statistical approaches for data analysis and some sort

of “expert knowledge” through some artifices, such as (i) inference keys (TEM-

PLETON, 1998); (ii) Bayesian networks (BEAUMONT; ZHANG; BALDING, 2002);

(iii) model selection score.

Notwithstanding these efforts, their contribution is limited and, in some sort,

come to negatively interfere in the ongoing research progress and conclusions;

42

some of them have been publicly attacked in the scientific community (KNOWLES,

2008), what has driven the computational biology community to seek the develop-

ment of algorithms to solve this particular problem (KNOWLES, 2002)(KNOWLES,

2003)(BEAUMONT; ZHANG; BALDING, 2002).

The solutions proposed, nonetheless, still present some weak aspects; in the

general case, they eliminate concurrent hypothesis with little confidence degree

(if compared with the one automatically selected by the algorithms) because they

are unable to handle multiple explanations or ensemble of models. It is even true

for those methods in which high human interference in the system analysis exist:

in such cases, an automated algorithm scores the models that probably fit the

data and, through an ordered list, outputs the model the scientist should use to

direct the explanations need in his research. This kind of algorithm, although

of some help, hurts some scientific, philosophical and common sense principles,

specially the Epicurus’ principle of multiple explanations (LI; VITÁNYI, 1997),

restricting the result to a single hypothesis based uniquely in a numerical value

scored by probabilistic — or even by some “pseudo-expert” knowledge source.

In the search of a broader, more complete and less sensitive algorithm to the

variations of Nature, an unification algorithm is proposed, mainly acting in the

input data.

As shown in figure 14, haplotype networks are input data in the processing

algorithms, determining primary relationship among the several haplotype se-

quences extract from living beings in field work. Nonetheless, it is known that

incorrect or missing data in these networks compromise the correct analysis of

phylogeographic events (JOLY; STEVENS; VUUREN, 2007), leading to incorrect

conclusions (or even no conclusion at all) about the ongoing research because of

propagation of errors, also known as butterfly effect(LORENZ, 1963). Since the

haplotype networks are fundamental input data for phylogeographic inference,

43

Input

Haplotype
Networks

Processing Output

Phylogeogr.
Model

Figure 14: Data-flow of data analysis algorithms (left to right).

the proposed algorithm is totally focused in the treatment of this particular data.

By historical reasons(AVISE, 2007), mitochondrial DNA has been used in

phylogeographic research because of some properties as high mutation rate, low

recombination rate and traceable maternal origin, besides being smaller than

nuclear DNA. However, the extensive usage of this material has reached the lim-

itation of useful information it provides, driving researchers to the exploration of

nuclear DNA (KNOWLES, 2002)(KNOWLES, 2003) where new properties become

available (e.g. recombination rate, significantly higher if compared if mitochon-

drial one). Still, transformations over haplotype networks are applied — such as

minimum spanning tree (MST) extraction — reducing the amount of informa-

tion this representation provides and, hence, restricting the hypothesis space for

inference.

In face of new contexts (as those stated above), new data analysis method-

ology comes out necessary since the old ones are unable to deal with current

requirements and particularities (WOOLLEY; POSADA; CRANDALL, 2008). With

44

the intention to increase the amount of available information from the same input

data set, an algorithm of graph composition (or graph unification) is proposed.

From definition 11, the isomorphism between a haplotype network and a

graph appears naturally; this property is also highlighted in some other publi-

cations (JOLY; STEVENS; VUUREN, 2007; TEMPLETON, 1998). The haplotypes

in a haplotype network compound the vertices set of the graph and their rela-

tionships are represented by the edges of the latter; this way, independent of

the algorithm which will synthesize the haplotype network, the set of vertices is

previously known and depends uniquely on the raw input data from field work,

being the edges set the one dependent of algorithm implementation.

Under this perspective, the diverse range of existing methods for haplotype

network (WOOLLEY; POSADA; CRANDALL, 2008), each of them highlighting a spe-

cific attribute of the input data, could be used in parallel to produce many (dif-

ferent) haplotype networks representing an (different) instance of the hypothesis

space and, hence, increasing the number of alternatives an inference algorithms

can analyze.

Obtaining all the haplotype networks separately and performing individual

analysis of each of them is, solely, a reinterpretation of the original problem, re-

quiring, the same way, a human specialist to interpret and unify the intermediate

results. For this reason, a new complete graph G = (V,E) is constructed, with

V =
⋃

Vi and each edge {v′, v′′} ∈ E selected among from Ei under certain rules

depending on the weight of the vertices (algortihm 1). The remaining {v′, v′′} nec-

essary to construct the complete G graph and not in E are added with suitable

information expliciting their non-existence in the original haplotype networks.

The graph G, with all the possible (and most probable) relationships among

the haplotypes, presents a hypothesis space denser than any individual one pre-

sented by each of the methods used to compound this new graph (and space),

45

reintroducing the Epicurus’ principle to the universe of data analysis.

5.1 Algorithm

For correct treatment of the data (haplotype networks) and widen hypothe-

sis space, a formal definition is required in order to standardize the independent

processing of incoming stimuli; under a computational view, an algorithm is the

best and straightforward solution to achieve this feat. This way, the existence of

a general algorithm for haplotype network processing is only possible under the

definition of data standards that guarantees the optimal computation function-

ality.

5.1.1 Algorithm Input Restrictions

Seeking an uniform data processing, the haplotype networks must follow the

same constructions rules, keeping a visual identity among them.

In general manner, three main restrictions are applied:

1. Nonexistence of zero-type haplotype.

2. Edition distance between haplotypes are represented as edge weight.

3. There are no two isomorphic graphs.

It is important to note that the restrictions do not diminish the generalist

aspect of the algorithm; actually, these restrictions act as a transformation to a

common representation where all data are in such a structure they are optimally

manipulated.

46

5.1.1.1 Nonexistence of Zero-Type Haplotype

Haplotype networks are visual representations with high expressiveness and

easiness of use, commonly used in phylogeographic community to represent rela-

tionship among sampled haplotypes. Nevertheless, the evolutive history of hap-

lotype networks are dynamical, with variations being added through published

contributions and no standardization defined along the years; therefore, the most

used drawing identities became the de facto standard representations.

Some of these representations (CLEMENT; POSADA; CRANDALL, 2000;

TEACHER; GRIFFITHS, 2011) use the concept of “zero-type haplotype” to keep

the connectivity of the graph. The zero-type haplotype is a virtual node added

to the haplotype network so every edge represents an edition distance of one and

there is a path between any two haplotypes, with one of the sampled haplotypes

always being reached through the walking over the zero-type haplotype.

The name zero-type haplotype derives from the notation used in the Temple-

ton’s works (CLEMENT; POSADA; CRANDALL, 2000; TEMPLETON, 1998), where

every zero-type haplotype is labeled after the number zero (“0”) while the sam-

pled ones are named after the natural numbers greater than zero. Other refer-

ences, though, do not label de zero-type haplotypes, leaving them without label

(TEACHER; GRIFFITHS, 2011).

The absence of zero-type vertices in the graph avoids label and definition

conflicts, since every v ∈ V has a distinct name and no element repetitions are

allowed in V since it is a set; for multiple zero-type vertices as shown in figures 15

and 16, a type system should exist, defining different vertices in the set V , but

some with common properties, being the zero-type of these specific types, sharing

the property of being virtual and not sampled. This activity, though, is not a

central one for the current purposes and, hence, is out-of-scope.

47

123

4

5

67

89 10

11

12

13

14

15

16

17

18

19

20 21

22 23

24

25

0 0

0

Figure 15: Haplotype network presenting a zero-type haplotype highlighted (TEM-

PLETON; BOERWINKLE; SING, 1987).

123

4

5

67

89 10

11

12

13

14

15

16

17

18

19

20 21

22 23

24

25

Figure 16: Haplotype network presenting a zero-type haplotype as black vertices
(TEMPLETON; BOERWINKLE; SING, 1987; TEACHER; GRIFFITHS, 2011).

48

Also, as a complement feature, the lack of zero-type vertices explicits the

relationship among the sampled haplotype, demanding the information of editing

distance be clearly annotated in the drawing for proper graph comprehension.

This way, an automatic process can easily extract this information for further

use.

5.1.1.2 Edition Distances Between Haplotypes Are Represented As
Edge Weight

An usual application of graphs as haplotype networks is the representation

of “mutation distance” of one haplotype to another one, interconnecting them

through an edge if a single nucleotide (SNP) between the haplotypes are different.

In phylogeographic studies, particularly those based on mitochondrial DNA, that

kind of haplotype network usage is very common.

However, a phylogeographic study is not limited to mutation analysis and may

include other kind of “edition over the genetic sequences, e.g. recombination. In

these new situations the graphical representation can also be used and is, actually,

desirable since highlights relationships harder to see than SNPs.

As an example, if an haplotype h1 has 11 SNPs of recombination origin dif-

ferent from a haplotype h2, the former would be separated through 11 edges

from the latter in a mutational graph, drawing a very polluted and confusing pic-

ture, allowing errors in data interpretation; in the other hand, the former would

be separated by a single edge, representing an unique recombination (or editing

operation), from the other in a recombination graph.

For interpretation and future comparison purposes, every connection between

haplotypes is made through a single edge with the proper editing distance in

that graph between the vertices represented as the weight of the edge. In the

example cited above, the connection between h1 and h2, in both cases, would

49

h1

h2

0

0

0

0

0

0

0

0

0

0

(a) Unweighted mutational graph

h1 h2

(b) Unweighted recombination graph

Figure 17: Example of unweighted haplotype networks representations

h1 h2
11

(a) Weighted muta-
tional graph

h1 h2
1

(b) Weighted re-
combination graph

Figure 18: Example of weighted haplotype networks representations

be represented by a single edge, one with weight equals to 11 and the other

with weight equals to 1, keeping the clearness and all information provided by

graphical representation.

Another advantage of this modeling is the straightforward connection between

two distinct haplotypes, optimizing the search operations of automatic algorithms

and ease of application of well-known ones such as Dijkstra’s algorithm (CORMEN

et al., 2010); under this perspective, the construction of a complete weighted graph

in this model and the application of the latter algorithm can be used to extract

new and valuable information in a different way than proposed by the current,

most used, methods based, solely, on Prim’s algorithm (CORMEN et al., 2010).

5.1.1.3 There Are No Two Isomorphic Graphs

The existence of isomorphic graphs as product of application of series of graph

synthesis methods is quite reasonable and should be expected in a context like

50

this. Nonetheless, in circumstances where automatic algorithms process an input

set of graphs, the presence of isomorphic graphs increases the complexity of a

general solution since features as verification of already processed graphs and

performance optimization must be implemented.

For the purpose of this research, hence, it is considered that no two isomorphic

graphs exists in the input data set.

5.2 Algorithmic Steps

The development of the algorithm gets easier with the input data restric-

tions presented in sub-section 5.1.1; though, a functional fragmentation is still

necessary for proper picture the scenarios and understand the procedures.

This way, the algorithm is divided in three different functional steps, enough

for the correct construction of the proposed algorithm. The steps are defined as:

1. main algorithm, where the haplotype networks act as input data and

the main procedures are executed to the proper treatment of these data,

producing an unified graph with the desired properties presented in the

beginning of this chapter as output;

2. vertices function, where a set V of all the vertices contained in the input

data (haplotype networks) is defined;

3. minimum weighted edge function, which seeks among the many in-

put graphs in G = {G1, G2, . . . , GN} for the edge ei
v,v′ = {v, v′}, fixed

v and v′, that minimizes the weight function w such that w
(

ei
v,v′

)

=

min
{

w
(

e1v,v′

)

, w
(

e2v,v′

)

, . . . , w
(

eN
v,v′

)}

, with ei
v,v′ ∈ Vi ∈ Gi ∈ G.

51

5.2.1 Main Algorithm

The idea of the main algorithm, as state above, is to manipulate the input

data producing a single output graph, particularly a network in the phylogeo-

graphic jargon, with the main characteristics of each input graph according to

Epicurus’ principle of multiple explanations; for this accomplishment, a series of

requirements must be satisfied.

First of all, a graph is a pair that consists of a set of vertices V and a set of

edges E (as defined in chapter 4) and although, formally, V and E are allowed

to be an empty set, V is always known (to be not empty) because it is the set of

haplotypes; the same, though, is not true for the edges set E and, for this reason,

it is considered initially empty in the output graph.

Since a haplotype can not derive from itself because it does not make any

sense, a vertex {v, v} has no possibility to exist in the input data or the output

graph. On the other side, a complete graph may exist — even the output one

— and, this way, every edge {v, v′}, with {v, v′} ⊆ V and v′ 6= v, must have its

existence verified against the set G of input graphs. Therefore, this procedure is

realized through the usage of a special search function covering the elements of

the set G.

Even if an edge ei
v,v′ belonging to a Gi ∈ G is found, it is not a guarantee

that it will be included as an element of the set E: the found edge must be a

representative of the most relevant property in the relation between haplotypes

v and v′; within this context, this representative, which will be called ev,v′ , is the

edge with the minimum associated value for the weight function w.

Once the edge ev,v′ is found, it is added to the set E, representing the optimal

(under the set G) relation between the vertices v and v′. Otherwise, an edge is

created with w (ev,v′) = +∞.

52

The process of finding edges with desired properties, selecting the best rep-

resentative and adding it to the set of edges of the output graph resembles the

elementary adaptive actions presented in the adaptive automata theory. Under a

mathematical view, the adaptive automata theory is desirable since it has many

theoretical results already proved and known, as well as particular and appropri-

ate notation for self-modifying systems.

The morphism between graph and automata exists, derived from category

theory (PIERCE, 1991), and is used in a range of applications (FILHO; ROCHA,

2011), also in the current proposal through the usage of adaptive automata the-

ory for mathematical formalism presented in the notation introduced in section

3.1.2.2.

Concerning the algorithm 1, the process of adding an ei
v,v′ edge to the set

E of edges is the unique adaptive action explicited in the following pseudo-code.

Formally, it represents the insertion function (equation 3.3), which is defined and

mathematically described (for this context) in section 5.3.

Algorithm 1 Main algorithm

Require: G = {G1, G2, . . . , GN}
Ensure: Composition of graph G from every g ∈ G

1: V ← V ertices(G)
2: E ← ∅
3: for i = 1 to |V | do
4: v ← vi ∈ V
5: for j = i+ 1 to |V | do
6: v′ ← vj

7: e←MinimumWeightedEdge(v, v′,G)
8: end for
9: E ← E ∪ {e}

10: end for

5.2.2 Vertices Function

The algorithm described in section 5.2.1 presumes the access to the whole set

of vertices (haplotypes) available from the input data. While it may be true in

53

a monolithic application responsible for the full treatment of the field collected

data, the proposed algorithm cannot assume this hypothesis as a tautology since

it has a generalist aspect and must keep the possibility of being implemented in

a wide range of software, including specific haplotype networks unification ones;

in this sense, to define a function for gathering all the vertices in a single set is

justified.

The V ertices function has the objective of visiting all the graphs Gi (1 ≤ i ≤

|G|) belonging to G, the argument of the function, and, for each vertex vi
j found

in the set Vi, with 1 ≤ j ≤ |Vi|, add it to the general set of (all) vertices V .

It is important to note that the set V is, initially, empty (V = ∅) and the

addition of the vertices in this set is done through the set operation of union (∪),

what prevents any vertex to be added two (or more) times in the general vertices

collection V — actually, defined as a set.

Although the V ertices function may appear an (insertion) adaptive action,

it is solely a formalism that guarantees the existence of fundamental components

(vertices) for the graphs unification operation.

Algorithm 2 Function V ertices(G)

Require: G = {G1, G2, . . . , GN}
Ensure: A set V ∈ G containing all vertices presented in the graphs g ∈ G

1: V ← ∅
2: for i = 1 to |G| do
3: V ′ ← Vi ∈ Gi

4: for all v ∈ V ′ do
5: V ← V ∪ {v}
6: end for
7: end for
8: return V

54

5.2.3 Minimum Weighted Edge

In algorithm 1, the find and selection process of the edges to compose

the final haplotype network is majority hidden under the function name

MinimumWeightedEdge; its objective is finding, for an unordered pair of ver-

tices, the edge connecting these vertices with most expressiveness of the char-

acteristics desired in the final graph G — in this case, the edge with minimum

weight associated to it.

For successful reach of this goal, the MinimumWeightedEdge function must

analyze every graph Gi belonging to G, with 1 ≤ i ≤ |G|, and verify the existence

of the edge ev,v′ = {v, v′} against the set of edges Ei ∈ Gi and then whether it is

the minimum weighted edge among all existing edges ev,v′ (in the graphs of G).

Algorithmically, the definition of a M (for minimum value) variable, with

infinity initial value, and an e (for minimum edge) variable, with empty value,

easy the comparison among the many ev,v′ since they keep information of the

fittest found edge (under the minimum weight metric). At the end of the algo-

rithmic process, the e variable itself is returned to the main algorithm, adding

the minimum weighted edge e = ei
v,v′ = min

{

w
(

e1v,v′

)

, w
(

e2v,v′

)

, . . . , w
(

eN
v,v′

)}

to

the graph G.

Theoretically, however, MinimumWeightedEdge represents more than a

function for finding minimum weighted edges, but the kernel of the adaptive

theory applied in the current research project: while the main algorithm (sec-

tion 5.2.1) represents the insertion adaptive action and the vertices function (sec-

tion 5.2.2) does not represent any adaptive action, the minimum weighted edge

function represents the search adaptive function and the special designed selection

and first functions, all supporting functions for the insertion adaptive action.

Since the theoretical and algorithmical aspects are all represented, it is

55

straightforward to conclude that the remotion adaptive action is not used in

the context of the current work; this property, though, was expected since the

algorithm has a synthesizing essence, aggregating desired properties from many

graphs and with no need to modify existing data structures — even in a con-

structive way.

Algorithm 3 Function MinimumWeightedEdge(v, v′,G)

Require: {v, v′} ⊆ V , with V ∈ G, and G = {G1, G2, . . . , GN}
Ensure: Find the edge ei

v,v′ = {v, v′} belonging to Gi ∈ G such that

min
{

w
(

e1v,v′

)

, w
(

e2v,v′

)

, . . . , w
(

eN
v,v′

)}

= w
(

ei
v,v′

)

1: e← ∅
2: M ←∞
3: for i = 1 to |G| do
4: E ′ ← Ei ∈ Gi

5: if ei = {v, v′} ∈ E ′ then
6: if w(ei) < M then
7: M ← w(ei)
8: e← ei

9: end if
10: end if
11: end for
12: return e

5.3 Applied Adaptive Theory

The development of the algorithm, although presented previously in the text,

is thought in parallel to and immediately derives from a formal-theoretical frame-

work. The requirements, same for both, are cleared defined and specified because

of the tough constraints imposed by the latter.

In this sense, the adaptive algebra (and the adaptive theory) imposes a series

of (strong) restrictions to a free (and unstructured) algorithm development, de-

manding an algorithmic design strongly tighted with the theoretical fundamentals

and, hence, generalist and still mathematically consistent.

Reminding the concepts on adaptive automata theory from chapter 3 and the

56

adaptive algebra depicted in section 3.1.2.2, the application of these are designed

for automata structures only, demanding the definition of an equivalence between

graphs and (finite state) automata. Theorem 1 deals with the graph-automaton

equivalence, while the automaton-graph one naturally rises from the fact that

automata are graphically represented by directed graphs (MENEZES; HAEUSLER,

2008).

Theorem 1. Let (G,w) be a directed weighted graph, according to definitions 11

and 12. There is a non-deterministic finite state automaton AG = (Σ, Q, F, q0, ∂)

that is visually represented by (G,w) and is considered equivalent to the latter.

Proof Sketch.

Graph Finiteness A graph (G,w) which seeks an equivalent non-

deterministic finite automaton AG must have its set of vertices V and, hence,

its set of edges E as finite ones since the compounding sets of AG are all finite

ones by definition.

Definition of the States Set In the directed weighted graph (G,w), the

set of vertices V belonging to G can be directly mapped to the set of states Q in

such that ∀vi ∈ V, ∃qi ∈ Q such that qi = τ◦(vi), where τ◦ : V 7→ Q and implying

that i = |V | = |Q|.

Setting Start State From the τ◦-transformation, if V is an ordered set,

q0 = τ◦(v0); else, q0 = τ◦(v
′), with v′ being any element of V .

Definition of the Final States Set F , the set of final states, is allowed

to be void in a non-deterministic finite state automaton and defines a special

group of states from this. If (G,w) do not have any special vertices that need to

57

be marked as final states in an automaton, F = ∅; else, F ∩ Q 6= ∅ and every

final state qi belongs to F as well to Q.

Definition of the Alphabet The image of the weighting function w ap-

plied to the set of edges E, represented as w[E], is a set containing (as elements)

all the weights applied to each edge of E which, graphically, are commonly rep-

resented as the graph edges’ labels. Since w[E] is a finite set (because E is a

finite set) containing symbols (weights) related to edges (or relations among the

vertices) of the graph (G,w), this set is considered equivalent to the alphabet Σ

of the AG.

Definition of the Transition Function Let Σε = Σ∪{ε}. A transition

function ∂ of a non-deterministic finite state automaton AG is defined as ∂ :

Q × Σε 7→ 2Q. Once V 7→ Q and w[E] 7→ E, the transition function ∂ of AG is

defined based on composing sets of the graph (G,w).

Since an equivalence is established between graph and automaton, a proper

adaptive theory for graphs is developed using (through some specializations for

the context) the adaptive algebra presented in section 3.1.2.2. Under this alge-

braic structure, there are external elements supportive for the algebra operations

and the internal elements which define de algebra itself and possessing, solely,

the ability to change the underlying device.

Among the external elements, the search function is of central interest since

it selects desired relations1 through pattern matching which are future used for

the other external elements, as the internal ones to compose the final result.

1When the subject is of an automaton type, these relations are the ones from the transition
function. However, in the context of the present work, it is an edge and its weight value.

58

The proper-search function proposed in definition 4 is widely defined concern-

ing its parameters for sake of generality of adaptive automata theory. For the

present context (using graphs), a proper-search particularization S (definition 18)

over the tuple (vertex v′, vertex v′′, graph G′) returns the existing edge, in the

graph G′, connecting the vertices v′ and v′′.

Definition 18. Let the search function S, defined as S : V × V ×G 7→ E, be a

particularization of the proper-search operation (definition 4).

However, the present analysis occurs in a space of graphs, and a search in an

unique graph does not represents the entire space. Therefore a new, and higher

level, function SG is developed and defined in definition 19, which seeks for and

retrieves all the edges connecting two vertices v′ and v′′ belonging to the graphs

of the graph-space in study. This way, through the application of SG, every

edge {v′, v′′} in this space, possessing different attributes or not, is gathered in a

specific set for future evaluation against their properties.

It is important to note the explicit operation over the graph-space2
G, made

clear through the necessity of the definition of the space as a parameter for the

function SG (in the place of the specific graph G′) and the set union operation

over the elements of this space.

Definition 19. Let SG be a general search function, functionally defined as

SG : V × V × 2G 7→ E, represents SG(v, v′,G) =

|G|
⋃

1

S(v, v′, Gi) = S(v, v′, G1) ∪

S(v, v′, G2) ∪ · · · ∪ S(v, v′, GN−1) ∪ S(v, v′, GN).

Possessing the set built of all the existing edges {v′, v′′} in G, with v′ and

v′′ representing two distinct parametrized vertices, it is possible to seek for those

edges that highlight in the set because of its particular properties. Nonetheless the

2Formally, G is a set of graphs, with no particularization. In the present context of this
work, G is the set of all graphs Gi sharing the same set of vertices V , a set of haplotypes.

59

definition of the interesting properties is completely connected to the definition

of a selection function ψ which, as suggested by its name, selects exclusively the

elements with desired properties. In the present context, as shown in definition 20,

the elements in analysis are each of the individual edges {v′, v′′} belonging to

the set built from the application of SG(v, v′,G) and the property desired is the

minimum edge weight value min
{

w
(

ei
v,v′

)}

, ∀ei
v,v′ belonging to a Gi in the graph-

space G and i = |G|.

Definition 20. Let ψ be a selection function defined as

ψ
(

ek
v,v′

)

=

ek
v,v′ , if w

(

ek
v,v′

)

= min
{

w
(

ei
v,v′

)}

∅ , otherwise

Following a generalization procedure similarly to the ones on definitions 18

and 19, a general selection function Ψ (definition 21) is developed as an applica-

tion of the selection function ψ over all the individual elements of the set built

from SG, composing a new set of edges Ψ(SG(v′, v′′,G)) ⊆ SG(v′, v′′,G) with all

of its elements owning the desired property stated in definition 20.

Definition 21. Let Ψ be a general selection function defined as

Ψ
({

e1v,v′ , e
2
v,v′ , . . . , e

N−1
v,v′ , e

N
v,v′

})

= ψ
(

e1v,v′

)

∪ψ
(

e2v,v′

)

∪ · · · ∪ψ
(

eN−1
v,v′

)

∪ψ
(

eN
v,v′

)

.

The successive application of the previously defined functions through the

mathematical device called function composition established a subset of all edges

{v′, v′′} belonging to the graphs of G, all of them sharing the same minimum

weight edge value, the desired property — under the Occam’s razor perspective

— to compose the best representative as a final graph G.

Nonetheless, only one of these edges is necessary to be allocated in the set

of edges of the final graph; since all of them are equivalent, the one with lower

60

index in the indexed and ordered set produced by Ψ function is taken through

the usage of the F function defined below (definition 22).

It is important to observe that the first element of the Ψ-set is taken for

algorithmical simplicity reasons: since the elements are equivalent under the con-

straints imposed by selection functions S and ψ, any of them could perfectly fit

the objective of composing G.

Definition 22. Let F (named after first) and R (rest) be functions defined, for

w = {a} ∪ w′ and w′ = {b, c, . . .}, as

F : 2V×V 7→ V × V | F(w) = a

R : 2V×V 7→ 2V×V | R(w) = w′

Finally, after, the selection of the best edge candidate, the application of

the foreign-transition addition operation f+ over the edge and the final graph G

characterizes the edge insertion adaptive operation, adding the edge to the set E

of G and keeping it associated to its edge weight value, min
{

w
(

ei
v,v′

)}

.

Although not cited in the previous passages, when no edge is found by the

selection functions, they return an empty value (empty set) and, hence, no edge

is added to G.

Definition 23. The edge insertion adaptive operation, composed by a compo-

sition of functions (definitions 19, 21 and 22) and adaptive operations (defini-

tion 9), is defined as

f+ (F (Ψ (SG (v, v′,G))) , G)

where G = (V, E) is the general output graph having edges added to.

61

5.4 Final Graph G

The final graph G owns the most expressive properties of each graph (belong-

ing to the universe G) that compose it under the restrictions imposed by selection

function ψ (definition 20). Hence, it absorbs, for every pair of vertices, the most

relevant edge with all its associated properties, like the weight of the vertices.

Since it analyzes every existing vertex in the universe of G and V × V space, G

is potentially a complete graph (definition 13) once it may aggregate every edge

{v′, v′′} with v′ 6= v′′ whether all of them exists in G. (The v′ 6= v′′ imposition ex-

ists because, in haplotype networks context, a hypothetical event — as a mutation

— that transforms a haplotype v′ to the same haplotype v′ do not bring much

information about the overall evolution of the species under study. Therefore,

this information is not taken in account when studying haplotype networks.)

The presentation of the final G as a graph with cycles (definition 16) pro-

vides a wide range of information, including central haplotypes (BONDY; MURTY,

2008), most connected ones (see definition 15) and many evolutionary paths.

Nonetheless, an unique evolutionary path is reasonable (and common) for phylo-

geographic and phylogenetics studies, investigating the reasons and events related

to the species under the selected and solely evolutionary path context; this path,

though, is represented by a tree (definition 17) which can be extracted from a

cycled graph through the usage of a series of algorithms, such as Prim’s algorithm

(BONDY; MURTY, 2008). However, it is important to note that better algorithms

for tree extraction from G can be developed, exploring the φ-selected properties

for the best path choice.

62

5.5 Example

Let a graph space G = {G1, G2, G3, G4, G5} be constituted of five graphs, all

of them composed by the set VG = Vi = {A,B,C,D,E}, for 1 ≤ i ≤ |G| = 5, of

five vertices and represented by figure 19.

A

B

C

D E

2

2

3
5

2

(a) G1

A

B

C

D E

3

5

(b) G2

A

B

C

D E

2

4

2

1

(c) G3

A

B

C

D E

4

1

5

4

4

1
2

(d) G4

A

B

C

D E

5

42

1

5

2

2

1

4

(e) G5

Figure 19: Graphs belonging to the space G of graphs.

For the composition of a final graph G under the characteristics of Epicurus’

principle and Occam’s razor and also keeping the main properties of the graphs

members of G, it will be gradually constructed following the algorithms presented

in section 5.2. For sake of space, repetitions on the algorithmic steps will be

avoided without loss of comprehension of the example execution.

Composition of sets V and E The first line of algorithm 1 is the attribu-

tion of the sets of vertices, V , of G through the functional call of V ertices(G)

(algorithm 2), which initially defines V = ∅. For i = 1, V1 is mapped to V ′ and,

in lines 4–6, every vertex belonging to V ′ = V1 is added to V through the set

union operation (line 5); this way, every vertex is added only one time even if it

is presented in other sets of vertices (which, in fact, is true for every vertex of V1

63

since V1 = V2 = V3 = V4 = V5). Finally, the composed V = V1 = . . . = V5 = VG

returns (line 8 of algorithm 2) to the main algorithm, proceeding the operation

with E = ∅.

Covering all possible edges An extensive search of all possible edges in the

graphs of G is made, seeking the edges with the desired property of minimum

weight edge. Since the graphs are undirected, the number of possible ones to

analyze is

(|V |)!

2!× (|V | − 2)!
=
|V | × (|V | − 1)

2
(5.1)

which, in the present example, is

5!

2!× (5− 2)!
=

5× 4× 3!

2!× 3!

=
5× 4

2

=
20

2

= 10

In algorithm 1, the combination of the vertices in pairs to compose the possible

edges to analyze is represented in the the loops and their variable attributions

described in lines 3 to 6. In particular, line 5 guarantees that every edge is taken

only one time.

In the example, the algorithm searches for the edges belonging to the following

set Esearch:

Esearch = { {A,B}, {A,C}, {A,D}, {A,E},

{B,C}, {B,D}, {B,E},

{C,D}, {C,E},

{D,E} }

64

Finding a minimum weighted edge The responsibility for finding the

edge {v, v′} (a generic representation of the edges belonging to Esearch) with min-

imum weight value is attributed, by the main algorithm (line 7), to the function

MinimumWeightedEdge(v, v′,G). This function, defined in algorithm 3, uses

two auxiliary variables, e and M , to structure and correctly search for the mini-

mum weighted edge; the former variable represents the minimum weighted edge

found so far, while the latter represents the value w(e) (for that edge). For this

reason (lines 1 and 2), these variables are initialized with values (e ← ∅ and

M ←∞) that represent the absence of found edges under the desired property.

In the loop of line 3, the set of edges of the ith graph of G is mapped to E ′

(i.e. E ′ ← E1, E
′ ← E2, etc...) and the existence of the edge {v, v′} is verified

in E ′. If it is positive (line 5) and its weight is less than the registered up to

the moment (line 6), the present edge is considered the minimum weighted edge

(lines 7 and 8) until the exhaustive search finishes or a new edge with smaller

w(ei) is found. Finally, the minimum weighted edge found, e, is returned to the

main function.

Table 2 summarizes, as simulation tables, the internal states of

MinimumWeightedEdge when executed for the first for the vertices

({A,B}, {A,C}, {A,D}, {A,E}) in graph space G, exhibiting the selected mini-

mum weighted edge at each execution.

Composing the final graph When an edge with minimum value of w(e) is

found (line 7 of algorithm 1), its addition to the set E of edges (line 9) is, at this

point of the algorithmic process, the solely operation needed to compose the final

graph G = (V,E) once ∀{v′, v′′} ∈ Ei =⇒ {v′, v′′} ⊆ Vi and ∀Vi, Vi ⊆ V | Gi =

(Vi, Ei)∧Gi ∈ G. When this repetitive operation ends at line 10, the final graph

is presented complete as represented by figure 20. At figure 20b, the edges of

65

v v
′ |G| i E

′
w(ei) M e

A B 5 ∞ ∅
1 G1 2 2 e1
2 G2

3 G3

4 G4

5 G5 4
returns e = e1 with w(e) = 2

(a) MinimumWeightedEdge(A, B, G)

v v
′ |G| i E

′
w(ei) M e

A C 5 ∞ ∅
1 G1 2 2 e1
2 G2

3 G3 2
4 G4

5 G5 1 1 e5
returns e = e5 with w(e) = 1

(b) MinimumWeightedEdge(A, C, G)

v v
′ |G| i E

′
w(ei) M e

A D 5 ∞ ∅
1 G1 5 5 e1
2 G2 3 3 e2
3 G3 2 2 e3
4 G4 4
5 G5 5

returns e = e3 with w(e) = 2

(c) MinimumWeightedEdge(A, D, G)

v v
′ |G| i E

′
w(ei) M e

A E 5 ∞ ∅
1 G1

2 G2

3 G3

4 G4 4 4 e4
5 G5 1 1 e5

returns e = e5 with w(e) = 1

(d) MinimumWeightedEdge(A, E, G)

Table 2: Simulation of the function MinimumWeightedEdge(v, v′,G) for the
first four edges.

G are colored according to the graphs of figure 19, emphasizing the origins of

each edge, as well as the unification and best features selection properties of the

proposed algorithm.

A

B

C

D E

2

1

2

1

1

2
1

3 2

2

(a) G

A

B

C

D E

2

1

2

1

1

2
1

3 2

2

(b) G with colored edges

Figure 20: Final graph G in normal representation (20a) and with edges colored
representing the original graphs they come from (20b).

66

6 DATA ANALYSIS AND RESULTS

The present work has been exploring theoretical aspects of biology, mathemat-

ics and computer science for the development of a still theoretical abstraction that

unifies an arbitrary range of hypothesis through the usage of user-defined selec-

tion function — which, in general, is a minimum weight function min{w1, w2, . . .}.

And although strongly based on well-established theories and concepts from the

aforementioned study fields, it is important to stress the proposed framework over

a series of controlled tests and examples of its application in an attempt to expose

its strengths over the existing methods, diagnose critical points for improvements

as specific behavioral patterns.

Concerning the last two hypothesis (stress tests and critical point analysis),

they are not conceived in the project and development of the scientific work,

opposed to the former one; nonetheless, product of the insuccess (under certain

metrics) of the first versions of the model tested against a set of known data,

they allow the refinement of the proposed theory, what generally represents its

improvement, presenting neglected aspects in the initial analysis or positive or

negative side effects from the design choice. Therefore, the application of a failure

analysis based on extensive set of tests is, opposed to the first and naive idea,

critical to the success of the proposed solution.

For the exhaustive execution of the tests, nonetheless, a reasonable compu-

tational effort is necessary once it is not possible to demonstrate the algorithm

67

effectiveness in a simple and straight way, but solely through theorems demon-

strations.

6.1 Developed Tools

Under this perspective, a set of applications were developed with the unique

intention to validate the proposed method in the present work. A total of two

software were built covering the activities of artificial data generation for testing

and analysis of the results produced by the data processing through the applica-

tion of the proposed algorithm.

6.1.1 Data Generation Tool

Since the confrontation of the existing algorithm against the ones already

used by the scientific community, under the real data evolved naturally, is incon-

clusive because of the lack of knowledge of the real behavior of Nature and its

relationship with the genetic (and environment) data. For this reason, artificial

data are generated under certain known evolutionary models, which can be used

to compare the expected results against the models used to guide the generation

of the data (KNOWLES, 2008).

For this purpose, a data generation tool was developed, assembling DNA

strands in a random way, but observing some pre-defined rules which can be pre-

configured by the user (figure 21a), interactively, or arbitrarily specified by the

software (figure 21b) seeking to build a valid statistical corpus of artificial DNA

data.

There are two common functions for building the sets of haplotypes, one being

responsible for creating the group of haplotypes and the other for assembling the

DNA code of a specific haplotype.

68

(a) Interactive version (b) Corpus version

Figure 21: Graphical User Interface for both versions of the data generation tool.

The general idea of these functions is:

Group of Haplotypes Function

1. generates an original haplotype (i.e., the first randomly generated haplotype

by the software);

2. creates empty lists of mutated and recombined haplotypes, with each list

length related to the percentage ratio of mutation and recombination de-

fined in the graphical user interface (GUI);

3. if the list of mutated haplotypes is not full, generates a mutated haplotype;

4. if the list of recombined haplotypes is not full, generates a recombined hap-

lotype;

5. iterates through the steps 3 and 4 until both lists get full.

Single Haplotype Generator Function

1. verifies whether the requested haplotype to generate is an original, mutated

or recombined haplotype;

2. if an original haplotype, then generates an haplotype through the random

sampling of DNA nucleobases;

69

3. else if an mutated haplotype, define the number of mutation randomly but

under the exponential distribution (ROSCHE; FOSTER, 2000) and change the

nucleobases arbitrarily (related to its position in the haplotype sequence);

4. else, a recombined haplotype is requested and one haplotype is chosen, ran-

domly, to be copied in a new haplotype which will become the recombined

one. Other haplotype is selected at chance and a continuous segment of

nucleobases (said i-j segment, as a reference to the indexes where the seg-

ment starts and ends) is replicated from this haplotype to the copied one,

exactly in the same indexes (i and j) delimiting the recombined segment,

forming a new and recombined haplotype.

As the result of these processing activities, the data generation tool outputs

a NeXus file (MADDISON; SWOFFORD; MADDISON, 1997) with a list of named

haplotypes under the following pattern in Backus-Naur Form (BNF)(BACKUS et

al., 1964):

<haplotype name> ::= original

| <modified haplotype kind><index>

<modified haplotype kind> ::= mutated | recombined

<index> ::= <number>

<number> ::= <non-zero algarisms>

| <non-zero algarisms><number suffix>

<number suffix> ::= <algarisms>

| <algarisms><number suffix>

<algarisms> ::= 0 | <non-zero algarisms>

<non-zero algarisms> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Table 3: BNF representation of the simulated haplotype name grammar

where <haplotype kind> may be substituted by original, mutated or recom-

bined and <index> is the numerical representation of the index of the haplotype

in the generation process.

70

6.1.2 Data Analysis Tool

The usage of the data generation tool (described in section 6.1.1) for statisti-

cal reasoning demands (and produces) a great volume of raw data in a special file

format called NeXus (MADDISON; SWOFFORD; MADDISON, 1997); each of these

files, in turn, contains a considerable number of haplotypes composed of a long

sequence of nucleobases, resulting in an intractable corpus of raw data for human

analysis. Since the application of the present work (as detailed in chapter 5) pro-

duces three times more data (because of the tests under mutation, recombination

and the proposed technique), the task becomes utterly time-consumable even for

entire laboratory staff. Therefore, a software tool was developed, seeking for the

automation of the repetitive task of data analysis.

The information that can be retrieved from an automatic analysis, though,

is limited to numerical one because of the inability of digital systems to deal

with other kinds of data; interpretation on visual data, e.g. spatial structure of

the graphs, are inferred from relations among the quantitative data extracted

autonomously.

Thus, two distinct sets of properties may be defined, one concerning the

fundamental parts composing a graph (F set) and other related to the relation

among the diverse number of haplotype modification (R set). In the present

software developed, F is composed of the nodes, edges and edges’ weight and

R of mutation, recombination, final, which represented the final graph after the

application of the techniques proposed in this work, as well as all the combina-

tions of the previous elements, i.e. mutation ∧ recombination, mutation ∧ final,

recombination ∧ final and mutation ∧ recombination ∧ final.1 Then, a com-

plete relation P = F ×R may be defined, creating properties that match graph

1The α∧β notation, in this context, has the interpretation of “α and β has the same value”
for some property.

71

“building blocks” against operations over haplotypes. For example, the element

(node,mutation∧recombination) of P , which may be represented as N(M = R),

means “the property which specific nodes are the same for the mutation and

recombination graphs”.

Finally, 18 properties were defined for data analysis:

P = { N(M), N(R), N(F),

N(M = R), N(M = F), N(R = F), N(M = R = F),

E(M), E(R), E(F),

E(M = R), E(M = F), E(R = F), E(M = R = F),

W (M = R),W (M = F),W (R = F),W (M = R = F) }

For the proper calculation of these properties, the required data (F and R)

are extracted from the output file of the main software — the one that processes

the proposed method on the NeXus files; the total number of nodes and edges, as

well as each edge weight, are parsed directly from the file, following the grammar

represented at table 4; the intersection information among the graphs, i.e. the R

set, are individually calculated using the file name suffix that indicates the used

method for graph construction (table 5) and automatic comparison.

<file> ::= <nodes><edges><common edges>

<nodes> ::= Nodes: <number><new line>

<edges> ::= Edges: <number><new line>

<common edges> ::= ((’<haplotype name>’,’<haplotype name>’),

<number>)<new line><next element>

<next element> ::= <common edges> | ε2

<new line> ::= CR | LF | CR LF 3

Table 4: BNF representation of the output file of the main software grammar

The data analysis tool (figure 22) process the outputted files from a single

NeXus or even from multiples ones, as in case of the multiple simulations; as

result, it outputs a single comma-separated values (CSV) file (SHAFRANOVICH,

72

<file name> ::= <user input> <processing method>.txt

<user input> ::= <printable> | <printable><user input>

<processing method> ::= mutation | recombination | final

<printable> ::= <letter> | <number> | <valid symbols> 4

<valid symbols> ::= | - | . | (|)

Table 5: BNF representation of the output file name grammar

2005) with all properties P calculated for each of the several files selected (or even

for the single one, if it is the case). The CSV file is not valid as a final analysis

of the results, but enhances the understanding over the relationship among the

diverse existing methods tested and directs deeper studies highlighting important

variables, for example.

Figure 22: Graphical User Interface for the data analysis tool.

At last, the online repository (GUIRALDELLI, 2012) contains the source code

of the data analysis tool (as well as the other software) for full understanding of

the realized calculations performed by the software.

6.2 Results

With a real (CABANNE; SANTOS; MIYAKI, 2007)(CABANNE et al., 2008) hap-

lotype information available, along with a hundred simulated ones, as well as all

properties P accessible through the processed CSV file, a series of interesting

relationship emerged from the existing data, either by the numerical properties

or graphical ones.

2ε is used as a representation of the null character. (SIPSER, 2005)
3Carriage return (CR), line feed (LF) or a combination of both are standard ways to repre-

sented new line in a plain text file in the main operating systems.
4For sake of brevity, the definition of the non-terminal symbol <letter> was omitted without

loss of comprehension.

73

6.2.1 Numerical Analysis

The numerical analysis on the processed CSV file, at first, reveals a strong

relation between the number of edges of the mutation and final graphs, empha-

sized by the fact that these number are always the same; this natural relationship

rises from the fact that a mutational connection can always be established be-

tween two haplotypes, even if they are completely different — what would define

a mutational distance of the length of the haplotype sequence — and, then, a

complete graph can be assembled (what, in fact, happens).

Conversely, the edges derived from recombination relationship predominate

as the most used ones by the final graph, with all of them “copied” to the former

because their (edges) weights are smaller than their mutated counterparts. The

origin of the smaller weights resides in the fact that a recombination distance of

1 may be equivalent to a mutation distance of 1, 2, . . . up to half of the haplotype

length, i.e., the probability of n > 1 modified nucleobases have mutational origin

is smaller than the probability of recombinational origin, if the recombination

and mutation rate are equal.

As a consequence, the final (and complete) graph G = (V,E) has all the

edges of the recombination graph GR = (VR, ER) and the remaining ones from

the mutational graph GM = (VM , EM); in mathematical notation, E−ER ⊆ EM .

For instance, in the studied corpus, an average of 73.2% of the elements in E

belongs exclusively to ER (ER − EM set), in opposition to 15.6% exclusively to

EM (EM−ER set); the remaining 11.2% of the edges belongs to the set EM ∩ER.

Owing to the redefinition of the edges’ weight of recombination root, the

structure and relationships of the graphs and its subgraphs are deeply altered;

accordingly, a MSTG (minimum spanning tree of the graph G) derived from the

complete final graph G is topologically different from one, namelyMSTM , derived

74

from a complete mutational graph M used to compose G, due to the fact that

the minimum spanning tree algorithm (CORMEN et al., 2010) assembles the tree

based on the edges with minimum weights.

Finally, the effect of the false positives and negatives was diagnosticated,

with a number of mutational edges recognized as recombinational ones. These

side effects, yet, are diminished when the reference mutational rate is lower than

50%.

6.2.2 Graphical Analysis

The pure numerical analysis of graphs, although reveals interesting properties,

if fails to clearly expose these facts. In this sense, plotting the graphs clarifies

many of these “numerically uncovered properties”, particularly the topological

ones.

Under this perspective, an analysis of the final graph G along the mutational

graph GM does not aggregate any information, since both of them are complete

graphs and their differences are promptly known, the set ER of the recombination

graph GR. For this reason, the graphical analysis is densely benefited if applied

over the minimum spanning trees MSTG (figure 23), MSTM (figure 24) and

MSTR (figure 25).

As the following figures manifest, the spatial disposition of the elements are

pretty different, even with the graphs composed exactly by the same nodes. As

already stated in section 6.2.1, this property rises from the behavior of the mini-

mum spanning tree algorithm, seeking for the least effort to travel between nodes.

75

1

1

3

1

1

1

1

1

2

1

1

1

1

1

1

1

1

1

3

2

2

2

1

1

1

1

2

1

B0822

P2249

B0908II

P2245

P1379

399195II

P399199

P1644II

B0918II

P2258II

P1544II

417h4

B0918

391h5

I 399196

I-399198

P1644

P2878II

P330II

II391312

P2258

P1024II

P937

IB0913

B0913II

P2876II

P2877II

P2267

II399199

Figure 23: Minimum spanning tree extract from the final graph G of the real
data from (CABANNE; SANTOS; MIYAKI, 2007; CABANNE et al., 2008).

1

3

1

1

1

1

1

1

1

1

1

13

1

3

2

2

1

2

1

3

2

1

4

1

1

2

1

4

B0822

P2249

B0908II

P2245

P1379

399195II

P399199

P1644II

B0918II

P2258II

P1544II

417h4

B0918

391h5

I 399196

I-399198

P1644

P2878II

P330II

II391312

P2258

P2267

P1024II

P937

IB0913

B0913II

P2876II

P2877II

II399199

Figure 24: Minimum spanning tree extract from the mutation graph GM of the
real data from (CABANNE; SANTOS; MIYAKI, 2007; CABANNE et al., 2008).

76

1

1

1

3

1

1

1

3 2

1

1

2

2

1

3

2

1

1

1

3

1

1

2

1

2

2

2

1

B0822

P2249

B0908II

P2245

P1379

399195II

P399199

P1644II

B0918II

P2258II

P1544II

417h4

B0918

391h5

I 399196

I-399198

P1644

P2878II

P330II

II391312

P2258

P1024II

P937

IB0913

B0913II

P2876II

P2877II

P2267

II399199

Figure 25: Minimum spanning tree extract from the recombination graph GR of
the real data from (CABANNE; SANTOS; MIYAKI, 2007; CABANNE et al., 2008).

77

7 CONCLUDING REMARKS

The usage of graphical notation for representing knowledge follows the sci-

entific community for long time in a number of fields and, in Biology, it is not

different. Nonetheless, not long past years (TEMPLETON; BOERWINKLE; SING,

1987) it has been used for phylogeographic studies and a definitive technique

is far from established (BEAUMONT; PANCHAL, 2008; KNOWLES, 2008; PETIT,

2008b, 2008a; TEMPLETON, 2008), with many requirements still pending such

as error rates (KNOWLES, 2008) and the deliverance of mutational only analysis

(WOOLLEY; POSADA; CRANDALL, 2008).

Sharing the same concerns of many biologists, the present work extends the

nowadays biological usage of graphical representation, attentive exclusively to

the notational didactic and explanatory aspect, to the graph theory formalisms

originated in the discrete mathematics field, presenting a clear connection (and

unification) between these two fields through the loan of concepts from one to

another (chapter 5).

There are some remarkable advantages in joining these subjects, specially the

ones derived from exact sciences. As an almost three centuries old field, graph

theory comprises knowledge and techniques for solving most of the usual (and

even uncommon) barriers involving graphs, as algorithms for extracting the min-

imum trees (CORMEN et al., 2010), graph rewriting techniques (ROZENBERG; SA-

LOMAA, 1997; ROZENBERG, 1997) and graph algebras (ROZENBERG; SALOMAA,

78

1997; ROZENBERG, 1997); furthermore, it is a still developing mathematical field

with recent important discoveries (BOLLOBAS, 1998).

The graph theoretical perspective brought to the haplotype network topic al-

lows the application of algorithmically — and, hence, computationally — struc-

tured thoughts to the area, moving the graphical notation away from the bi-

ological concerns and bringing some abstractions on; as an example, dynamic

adaptations of the graph topology as new data is collected or inputed in the

system independently of a preconception model. In fact, based on the graph

rewriting concepts, set operations on graphs (BOLLOBAS, 1998) and adaptive

automata (FILHO; ROCHA, 2011; NETO, 1993b, 2001), the present work now al-

lows the inclusion of many DNA modification (as mutation, recombination and

horizontal genetic transference (GOLDENFELD; WOESE, 2007), as any other) in

the haplotype analysis and, finally, adapts the final result to the best one (un-

der a specific standpoint defined by a particular selection function as presented

in definition 20) dynamically, compounding a network scenario hardly seen and

functionally efficient thanks to the computation and comparisons performed.

7.1 Contributions

The above adaptive formalism applied to the proposed technique, explicitly

because of the chosen notation ((FILHO; ROCHA, 2011) and section 3.1.2.2), pro-

vides an algorithmic framework in functional programming style (HUDAK, 1989)

which enables easy implementations of a haplotype network analysis software, as

well as their maintenance, since the compounding “movable parts” (functions SG

and Ψ in definition 23) may be substituted for ones that better suit the desired

purposes.

Two other features also highlight as results of the current research: (i) new

79

haplotype network topologies; (ii) and new error rates information. The former

characteristic emerges from the inheritance of the many graphs properties aggre-

gated in the final graph and their processes for inference of the most realistic

(and, as the final purpose, truly representative of the Nature’s historical behav-

ior) haplotype modification scattering; as straight benefit, the new topologies

provides new insights — not seen before because of the limitation in the num-

ber of tested genetic code modifications hypothesis — over phylogenetic related

researches since new connections are revealed.

The later one, in the same trend, revealed the importance and influence of

choosing the multiple algorithms for raw data analysis instead of relying solely

on the mutational one; the positively impressive statistics for low mutation sim-

ulations reveals the efficiency of the multiple algorithm, state kept (with quality

decay) up to half-half mutation-recombination simulations. Above this threshold,

the number of false positives (which, in this case, means the number of muta-

tional haplotypes recognized as recombinational ones) grows considerably, as well

as the error rates.

7.2 Future Work

This way, as a future strategy for improvements, other mathematical ab-

stractions should also be tested, particularly as composition element of the selec-

tion function Ψ, as initially proposed and experienced in (GUIRALDELLI; ROCHA,

2011). Elements like conditional probabilities, mutation and recombination rates

and some information theory, as entropy (COVER; THOMAS, 2006) and Kol-

mogorov complexity (LI; VITÁNYI, 1997; WALLACE, 2005), sound like reasonable

initial attempts because of their similar usage, in other but similar situations, for

concurrency resolution.

80

7.3 Conclusion

Finally, it is important to state the incipience of the subject and its growth

and significant existing potential as genetic information is gaining central impor-

tance in a diverse number of studies, like biological, medical or even historical

fields. Thus, the application of the presented technique may directly and immedi-

ately benefit some neglected areas like hospital, particularly infectology reasoning,

as well as support other phylogenetics applications such as species distribution

modeling.

81

BIBLIOGRAPHY

ANDERSON, S. et al. Sequence and organization of the human mitochondrial
genome. Nature, v. 290, p. 457–465, 1981.

ANISIMOV, O.; FITZHARRIS, B. Climate change 2001: Impacts, adaptation
and vulnerability. In: . [S.l.]: Intergovernmental Panel on Climate Change,
2011. cap. Polar Regions (Arctic and Antarctic), p. 801–841.

AVISE, J. C. On Evolution. [S.l.]: The Johns Hopkins University Press, 2007.
95–102 p.

AVISE, J. C. et al. Intraspecific phylogeography: the mitochondrial DNA bridge
between population genetics and systematics. Annual Review of Ecology and
Systematics, v. 18, p. 489–522, 1987.

BACKUS, J. et al. Revised Report on the Algorithmic Language Algol 60. [S.l.],
1964.

BEAUMONT, M.; PANCHAL, M. On the validity of nested clade
phylogeographical analysis. Molecular Ecology, v. 17, n. 11, p. 2563–2565, June
2008.

BEAUMONT, M. A.; ZHANG, W.; BALDING, D. J. Approximate bayesian
computation in population genetic. Genetics, v. 162, n. 4, p. 2025–2035,
December 2002.

BOLLOBAS, B. Modern Graph Theory. [S.l.]: Springer, 1998. 408 p.

BONDY, A.; MURTY, U. Graph Theory. 3rd. ed. [S.l.]: Springer, 2008. 666 p.
(Graduate Texts in Mathematics).

BOOCH, G.; RUMBAUGH, J.; JACOBSON, I. The Unified Modeling Language
User Guide. [S.l.]: Addison-Wesley Professional, 2005.

CABANNE, G. S. et al. Nuclear and mitochondrial phylogeography of the
atlantic forest endemic Xiphorhynchus fuscus (aves: Dendrocolaptidae):
Biogeography and systematics implications. Molecular Phylogenetics and
Evolution, v. 49, p. 760–773, 2008.

CABANNE, G. S.; SANTOS, F. R.; MIYAKI, C. Y. Phylogeography of
Xiphorhynchus fuscus (passeriformes, dendrocolaptidae): vicariance and recent
demographic expansion in southern atlantic forest. Biological Journal of the
Linnean Society, v. 91, p. 73–84, 2007.

82

CALLADINE, C. et al. Understanding DNA — The Molecule and How It
Works. [S.l.]: Elsevier, 2004.

CANN, R. L.; STONEKING, M.; WILSON, A. C. Mitochondrial DNA and
human evolution. Nature, v. 325, p. 31–36, January 1987.

CAO, L.; KENCHINGTONA, E.; ZOUROS, E. Differential segrega-
tion patterns of sperm mitochondria in embryos of the blue mussel
(Mytilus edulis). Genetics, v. 166, p. 883–894, 2004. Dispońıvel em:
<http://www.genetics.org/cgi/content/full/166/2/883>.

CARNIELLI, W.; EPSTEIN, R. Computabilidade, Funções Computáveis, Lógica
e Fundamentos da Matemática. [S.l.]: UNESP, 2009. 415 p.

CLEMENT, M.; POSADA, D.; CRANDALL, K. TCS: a computer program to
estimate gene genealogies. Molecular Ecology, v. 9, n. 10, p. 1657–1660, 2000.

CORMEN, T. H. et al. Introduction to Algorithms. [S.l.]: PHI Learning, 2010.
1312 p.

COVER, T. M.; THOMAS, J. A. Elements of Information Theory. 2. ed. [S.l.]:
John Wiley & Sons, 2006.

DAWKINS, R. The Ancestor’s Tale: A Pilgrimage to the Dawn of Life. [S.l.]:
Houghton Mifflin, 2004. 673 p.

DIESTEL, R. Graph Theory. 4th. ed. [S.l.]: Springer, 2010. (Graduate Texts in
Mathematics).

EULER, L. P. Commentarii academiae scientiarum imperialis petropolitanae.
In: . Commentarii academiae scientiarum imperialis Petropolitanae. [S.l.:
s.n.], 1736. v. 8, cap. Solutio problematis ad geometriam situs pertinentis, p.
128–140.

FILHO, R. I. d. S.; ROCHA, R. L. d. A. d. International conference on adaptive
and natural computing algorithms, ICANNGA 2011, Ljubljana, Slovenia, april
14-16, 2011, revised papers. In: . [S.l.]: Springer-Verlag, 2011. (Lecture
Notes in Computer Science, to be published), cap. Adaptive Finite Automaton:
a New Algebraic Approach, p. 1–10.

FORTNOW, L. Kolmogorov complexity. In: DOWNEY, R.; HIRSCHFELD,
D. (Ed.). Aspects of Complexity, Minicourses in Algorithmics, Complexity, and
Computational Algebra. [S.l.]: de Gruyter, 2001. cap. Kolmogorov Complexity,
p. 73–86.

FREELAND, J. R. Molecular Ecology. [S.l.]: John Wiley & Sons, 2005.
155–199 p.

GOLDENFELD, N.; WOESE, C. Biology’s next revolution. Nature, v. 445,
n. 7126, p. 369–369, January 2007. ISSN 0028-0836. Dispońıvel em:
<http://dx.doi.org/10.1038/445369a>.

83

GRAHAM, R. L.; KNUTH, D. E.; PATASHNIK, O. Concrete Mathematics: A
Foundation for Computer Science. [S.l.]: Addison-Wesley Professional, 1994.
672 p.

GRÜNWALD, P.; VITÁNYI, P. Shannon information and Kolmogorov
complexity. IEEE Transactions on Information Theory, July 2010. Submitted.
Dispońıvel em: <http://www.cwi.nl/ paulv/papers/info.pdf>.

GUIRALDELLI, R. H. G. MSc softwares source code in Python. February 2012.
Dispońıvel em: <https://github.com/guiraldelli/MSc>.

GUIRALDELLI, R. H. G.; ROCHA, R. L. de Azevedo da. Adaptive unification
of graphs applied to haplotype networks. Latin America Transactions, IEEE
(Revista IEEE America Latina), v. 9, n. 6, p. 950–955, October 2011.

GUSFIELD, D. Algorithms on Strings, Trees and Sequences: Computer Science
and Computational Biology. [S.l.]: Cambridge University Press, 1997.

HAWKING, S. God Created the Integers. [S.l.]: Running Press, 2005.

HOPCROFT, J. E.; ULLMAN, J. D.; MOTWANI, R. Introdução à Teoria de
Autômatos, Linguagens e Computação. [S.l.]: Elsevier, 2003.

HUDAK, P. Conception, evolution, and application of functional pro-
gramming languages. ACM Comput. Surv., ACM, New York, NY, USA,
v. 21, p. 359–411, September 1989. ISSN 0360-0300. Dispońıvel em:
<http://doi.acm.org/10.1145/72551.72554>.

JOLY, S.; STEVENS, M. I.; VUUREN, B. J. van. Haplotype net-
works can be misleading in the presence of missing data. Sys-
tematic Biology, v. 56, n. 5, p. 857–862, 2007. Dispońıvel em:
<http://sysbio.oxfordjournals.org/content/56/5/857.short>.

JUNQUEIRA, L. C.; CARNEIRO, J. Histologia Básica. [S.l.]: Guanabara
Koogan, 2008.

KAUFFMAN, S. A. The Origin of Order: Self-Organization and Selection in
Evolution. [S.l.]: Oxford University Press, 1993.

KNOWLES, L. L. Statistical phylogeography. Molecular Ecology, v. 11, p.
2623–2635, 2002.

. The burgeoning field of statistical phylogeography. Journal of
Evolutionary Biology, v. 17, p. 1–10, 2003.

. Why does a method that fails continue to be used? Evolution, v. 62,
n. 11, p. 2713 to 2717, November 2008.

LABARRE, A. Minimum Common Supergraphs and Haplotype Networks. [S.l.],
2007.

84

LEWIS, H.; PAPADIMITRIOU, C. Elements of the Theory of Computation.
[S.l.]: Prentice-Hall, 1997.

LI, M.; VITÁNYI, P. An introduction to Kolmogorov complexity and its
applications. Second. [S.l.: s.n.], 1997.

LORENZ, E. N. Deterministic nonperiodic flow. J. Atmos. Sci., American Mete-
orological Society, v. 20, n. 2, p. 130–141, mar. 1963. ISSN 0022-4928. Dispońıvel
em: <http://dx.doi.org/10.1175/1520-0469(1963)020¡0130:DNF¿2.0.CO;2>.

MADDISON, D. R.; SWOFFORD, D. L.; MADDISON, W. P.
NeXus: An extensible file format for systematic information. Sys-
tematic Biology, v. 46, n. 4, p. 590–621, 1997. Dispońıvel em:
<http://sysbio.oxfordjournals.org/content/46/4/590.abstract>.

MANOLOPOULOU, I. A Bayesian approach to Nested Clade Analysis. Tese
(Doctor of Philosophy) — University of Cambridge, September 2008.

MENEZES, P. B.; HAEUSLER, E. H. Teoria das Categorias para Ciência da
Computação. [S.l.]: Bookman, 2008.

MOGENSEN, H. L. The hows and whys of cytoplasmic inheritance in seed
plants. American Journal of Botany, v. 83, n. 3, p. 383–404, 1996.

NANNEN, V. A Short Introduction to Kolmogorov Complexity. [S.l.], April 2003.
Dispońıvel em: <http://volker.nannen.com/work/mdl/>.

NETO, J. J. Contribuições à metodologia de construção de compiladores. Tese
(Doutorado) — Escola Politécnica da Universidade de São Paulo, 1993.

NETO, J. J. Contributions to Compiler Design Methology. Tese (Doutorado) —
Escola Politécnica da Universidade de São Paulo, 1993. In Portuguese.

NETO, J. J. Adaptive rule-driven devices — general formulation and case
study. In: Pre-Proceedings of the CIAA’2001 Sixth International Conference on
Implementation and Application of Automata. [S.l.: s.n.], 2001. p. 158–176.

PANCHAL, M. ANeCA: User Guide. 1.2. ed. [S.l.], July 2008.

PEREIRA, L. d. V. Seqüênciaram o Genoma Humano... E Agora? [S.l.]:
Editora Moderna, 2005.

PETIT, R. J. The coup de grâce for the nested clade phylogeographic analysis?
Molecular Ecology, v. 17, p. 516–518, 2008.

. On the falsifiability of the nested clade phylogeographic analysis method.
Molecular Ecology, v. 17, n. 6, p. 1404, 2008.

PIERCE, B. C. Basic Category Theory for Computer Scientists. [S.l.]: MIT
Press, 1991.

85

POSADA, D.; CRANDALL, K. A.; TEMPLETON, A. R. Geodis: A program
for the cladistic nested analysis of the geographical distribution of genetic
haplotypes. Molecular Ecology, v. 9, n. 4, p. 487–488, 2000.

. Nested clade analysis statistics. Molecular Ecology Notes, v. 6, p.
590–593, 2006.

ROCHA, R. L. A. The A-FA, its properties, and a Walk through a FA-Space.
2008.

. Adaptatividade: Um método de escolha automática de soluçoes. [S.l.]:
Blucher, 2011. 192 p.

ROCHA, R. L. d. A. d. An Attempt to Express the Semantics of the Adaptive
Devices. Advances in Technological Applications of Logical and Intelligent
Systems - Selected Papers from the Sixth Congress on Logic Applied to
Technology, IOS Press, Lansdale, PA, v. 186, p. 13–27, 2009.

ROCHA, R. L. d. A. d.; NETO, J. a. J. Adaptive automaton, limits and
complexity compared to the Turing machine - in Portuguese Autômato
Adaptativo, Limites e Complexidade em Comparação com Máquina de Turing.
In: FACULDADE SENAC DE CIêNCIAS EXATAS E TECNOLOGIA.
Proceedings of the I Congress of Logic Applied to Technology - LAPTEC 2000.
São Paulo, 2000. p. 33–48.

. An Adaptive Finite-State Automata Application to the Problem of
Reducing the Number of States in Approximate String Matching. In: XI
Congreso Argentino de Ciencias de la Computación - CACIC 2005. Concordia,
Entre Ŕıos, Argentina: [s.n.], 2005. v. 1, n. 1, p. 17–21.

ROSCHE, W. A.; FOSTER, P. L. Determining mutation rates in bacterial
populations. Methods, v. 20, n. 1, p. 4 – 17, 2000. ISSN 1046-2023. Dispońıvel
em: <http://www.sciencedirect.com/science/article/pii/S1046202399909015>.

ROZENBERG, G. (Ed.). Handbook of Graph Grammars and Computing by
Graph Transformation. [S.l.]: World Scientific Pub Co Inc, 1997.

ROZENBERG, G.; SALOMAA, A. (Ed.). Handbook of Formal Languages. [S.l.]:
Springer, 1997.

RUSSELL, S. J.; NORVIG, P. Artificial Intelligence – A Modern Approach. 2.
ed. Englewood Cliffs, NJ, USA: Prentice Hall, 2003.

SHAFRANOVICH, Y. RFC 4180 – Common Format and MIME Type
for Comma-Separated Values (CSV) Files. October 2005. Dispońıvel em:
<http://tools.ietf.org/html/rfc4180>.

SHUTT, J. N. Self-modifying finite automata: Power and limitations. Technical
Report, Worcester Polytechnic Institute, n. WPI-CS-TR-95-4, 1995.

SIPSER, M. Introduction to the Theory of Computation. [S.l.]: Course
Technology, 2005.

86

TEACHER, A. G. F.; GRIFFITHS, D. J. HapStar: automated haplotype
network layout and visualization. Molecular Ecology Resources, Blackwell
Publishing Ltd, v. 11, n. 1, p. 151–153, 2011. ISSN 1755-0998. Dispońıvel em:
<http://dx.doi.org/10.1111/j.1755-0998.2010.02890.x>.

TEMPLETON, A. R. Nested clade analyses of phylogeographic data: testing
hypotheses about gene flow and population history. Molecular Ecology, Blackwell
Science Ltd., v. 7, n. 4, p. 381–397, 1998. ISSN 1365-294X. Dispońıvel em:
<http://dx.doi.org/10.1046/j.1365-294x.1998.00308.x>.

. Statistical phylogeography: methods of evaluating and minimizing
inference errors. Molecular Ecology, v. 13, n. 4, p. 789–809, April 2004.

. Nested clade analysis: an extensively validated method for strong
phylogeographic inference. Molecular Ecology, v. 17, n. 8, p. 1877–1880, April
2008.

. The diverse applications of cladistic analysis of molecular evolution, with
special reference to nested clade analysis. International Journal of Molecular
Sciences, v. 11, n. 1, p. 124–139, 2010.

TEMPLETON, A. R.; BOERWINKLE, E.; SING, C. F. A cladistic analysis of
phenotypic associations with haplotypes inferred from restriction endonuclease
mapping. i. basic theory and an analysis of alcohol dehydrogenase activity in
drosophila. Genetics, v. 117, p. 343–351, October 1987.

TEMPLETON, A. R. et al. Tree scanning: A method for using haplotype
trees in phenotype/genotype association studies. Genetics, v. 169, p. 441–453,
January 2005.

TEMPLETON, A. R.; SING, C. F. A cladistic analysis of phenotypic
associations with haplotypes inferred from restriction endonuclease mapping.
iv. nested analyses with cladogram uncertainty and recombination. Genetics,
v. 134, p. 659–669, June 1993.

The International HapMap Consortium. The international hapmap project.
Nature, v. 426, p. 789–796, 2003.

TURING, A. On computable numbers with an application to the entschei-
dungsproblem. Proceedings of the London Mathematical Society, v. 42, p.
230–265, 1936.

WALLACE, C. S. Statistical and Inductive inference by Minimum Message
Length. [S.l.]: Springer, 2005.

WIKIPEDIA. 2012. Dispońıvel em: <http://en.wikipedia.org/wiki/MtDNA>.

WOOLLEY, S. M.; POSADA, D.; CRANDALL, K. A. A comparison of
phylogenetic network methods using computer simulation. PLoS ONE, Public
Library of Science, v. 3, n. 4, p. e1913, 04 2008.

