
$Q�DGDSWLYH�PRGHO�IRU�VSHFLILFDWLRQ�RI�GLVWULEXWHG�V\VWHPV��

Almir Rogério Camolesi 1,2

and

João José Neto 1

(1) Universidade de São Paulo, Escola Politécnica da USP

Departamento de Engenharia de Computação e Sistemas Digitais,
São Paulo-SP, Brasil, 05508-900

(2) Instituto Municipal de Ensino Superior de Assis (IMESA), Coordenadoria de Informática.

Fundação Educacional do Município de Assis (FEMA)
Assis-SP, Brasil, 19807-634

DOPLU�FDPROHVL��MRDR�MRVH#SROL�XVS�EU��
�

$EVWUDFW�
This paper presents the ISDL-Adp model, an architectural abstract self-modifying model for the
specification of distributed systems. This model is the result of extending the concepts of non-
adaptive ISDL devices by using the concepts of adaptive devices. This paper shows the basic
structure by means of an illustrative example based on an adaptive hypermedia.

.H\ZRUGV: ISDL, non adaptive devices, adaptive devices, adaptive automata, adaptive hypermedia

��� ,QWURGXFWLRQ��
Rady [1] says that computer technology has been developing fast, thus allowing its use in many
different areas. Problems related to software development have increased and have become critical
the more these applications embrace areas where a failure could lead to more drastic consequences,
such as damages to human life and to property. This way, computer systems have become ever
more complex. A growing number of new and sophisticated applications has been conducted in
distributed machines that are interconnected through networks, that, in turn, have become even
faster. The use of these applications in distributed environments makes the project an extremely
complex task.

Due to the previously mentioned facts, specification and validation, including verification,
simulation and test are of crucial importance in the lifecycle of the distributed systems, especially
for the development of their applications. The specification cannot be ambiguous and it should be
bug-free as much as possible. The existence of a successful integration of new products implies the
performance of discerning tests related to the specification.

Current development methodologies present serious deficiencies in these areas. Frequently,
informal specifications generate incompatible interpretations and usually, many errors are only
detected after the release of the product. The later reasons justify the great effort that is being made
for the use of formal models for the development of such methodologies.

Works have been developed aiming at the aid of specialists in the specification of their systems.
The use of Formal Description Techniques (FDT), in the lifecycle of complex distributed systems,
is the object of an increased interest from the involved communities. A proof of this interest is the
great number of projects of the European Strategic Programme for Research and Development in
Information Technology (ESPRIT) in the area of Formal Methods, such as the LOTOSPHERE
Project [2].

Today, among the most commonly used FDTs for formal specification of distributed systems, the
Extended State Transition Language (Estelle) [3] and the Language Temporary of Ordering
Specification (LOTOS) [4] stand out. Both were developed and standardized by the International
Standard Organization (ISO). Also, the Specification and Description Language (SDL) [5],
developed and standardized by the International Telecommunication Union (ITU) stands out among
these FDTs.

There are still non-standardized formal models (e.g., Nets of Petri [6], Statecharts [7], that are used
in the specification and validation of distributed systems. [8] presents a group of architectural
concepts that make up a formal model for the description of distributed systems. Supporting tools
for this methodology can be found in [9]. [10] introduces the Interaction System Design
Language (ISDL) that represents the main structures of the model. Such language and tools are
being successfully employed in the construction of telematic systems and in the development of
commercial projects.

Further studies, related to adaptive formalisms [11], [1] and [12], seek to use techniques and forms
of representation of adaptive (dynamic) characteristics that are usually present in computation
systems. Among several other reasons, the little use of the self-modifying formalisms is due to the
complexity of existent notations, that turns its use a difficult one.

Neto [13] has presented a general proposal for the formulation of rule-driven adaptive devices. In
spite of the inherent complexity of such devices, the proposed notation is clear, intuitive and easy to
learn. The proposal is generic and it does not depend on the underlying non-adaptive formalism.

Stimulated by the previously presented works, this paper proposes the basic structure of the
extension of the $GDSWLYH� Interaction System Design Language� (ISDL-Adp) model. Such
model aims at joining the ISDL model clearness and easiness [8][10] and the adaptive specification
mechanism concepts (self-modifying). This paper is organized in the following way: section 2
briefly describes the structure of the non-adaptive ISDL device and its graphic representation.
Section 3 introduces the ISDL-Adp model. The next section presents an illustrative example and
finally, section 5 presents some conclusions and suggestions for future works.

��� 7KH�,6'/�QRQ�DGDSWLYH�GHYLFH��
Between 1981 and 1986, specialists from the International Organization for Standardization (ISO),
in its ISO/TC97/SC21/WG1/FDT Subgroup C developed the Language of Temporal Ordering
Specification (LOTOS) [4], that performs a Formal Description Technique (FDT). This language
was developed aiming to allow the specification and the development of protocols and open
distributed systems. FDT LOTOS reached the status of International Standard ISO in 1989.

Based on the acquired experience in the development of tools for FDT LOTOS, a group of
researchers from the University of Twente (Netherlands) developed a set of architectural concepts
for the specification of distributed systems [8][10]. The ISDL model was originally developed to
support the project of telematic systems, for example, services and protocols of the OSI model. A
methodology for the project of services and protocols based on this model can be found in [14].
Camolesi [15], developed a methodology for the project of Interactive TV services by using the
model in one of its phases.

Based on concepts presented in [13] the set of architectural concepts of the ISDL model forms a
non-adaptive device driven by rules that behave exclusively according to a finite group of rules
(actions and relations) that determine, in turn, for each possible configuration of the device, the next
configuration. This way, the ISDL non-adaptive device is described as being a sextuple, and is
formally represented by ISDL = (Ac, RC, Σ, c0, A, NA), where:

• ISDL is a non-adaptive device driven by rules, the operation of which defines a behavior
constituted by a group of causality relations RC;

• Ac is a set of all possible action occurrences, and c0 ∈ Ac determines the set of actions of
the initial behavior. The possible achieved behaviors are represented through the cross
conjunction of their partial executions. The cross conjunction and the partial executions are
formally denoted by ⊗ and� Hχ. Let us consider the cross conjunction of two partial
behaviors ((� and ((� that form the ((�behavior. ((consists of all possible executions Hχ,
being Hχ the conjunction of two compatible executions Hχ��and Hχ�, being Hχ��∈ ((��and�
Hχ��∈ ((�. Therefore, the ((behavior consists of all possible alternative constructions that
meet the requirements of an ((� (sub-) construction and an ((� (sub-) construction at the
same time.

• Σ is the finite set of all possible events that form the valid input strings to ISDL, being ε ∈ Σ;

• A ⊆ Αc is the set of action occurrences;

• F = Ac – A is the set of action non-occurrences;

• ε denotes “HPSW\”, and represents the null element of the set to which it belongs, in relation
to the concatenation operation

• w = w1... wn is a stream of input stimuli, where wk ∈ Σ-{ε}, k = 1,..., n with n≥ 0;

• NA is a finite set (with ε ∈ NA) of all possible symbols to be generated as output by the
ISDL mechanism. In practice, the output symbols in NA may be mapped into procedure
calls, so an output generated by applying any rule may be interpreted as a call to its
corresponding procedure;

• RC is a defined behavior defined by a set of behavior actions and interactions and their
causality relations. A behavior represents a set of activities that the entity (an abstract
concept that models a system, or part of a system) can perform. The action concept was
introduced in order to represent an activity executed by a single system in a specific
abstraction level.

Although an infinite variety of activities can exist, a single action concept can exist is enough to
model all of them, as the essential characteristics of an activity are represented through three
attributes of the action that models this activity: LQIRUPDWLRQ, WLPH and ORFDWLRQ. The attribute of
information represents the result of the execution of the activity that is being modeled. The attribute
of time represents the moment when the result becomes available, while the location attribute
represents the place (physical or logical) where such result is available.

An action either occurs only once, or it doesn’t occur at all. When it does, it means that the activity
has successfully finished. An action is an indivisible unit of activity, at a certain abstraction level
(an action is atomic). Therefore, it can be considered as a behavior unit.

An interaction represents an activity jointly executed by two or more systems. Consequently, an
interaction is common to the entities that represent the involved systems. As they represent the
activities, interactions carry the same attributes of actions. The difference between an interaction
and an action is in its partakers; while an action is always executed by a single participant, the
interaction is jointly executed by two or more partakers that can affect it in different ways.

An action and an interaction can be graphically represented by a circle and a semi-circle,
respectively, both connected to a text box describing their related attributes. Figure 1a graphically
represents a login action and Figure 1b illustrates a login interaction that had its functionality
modeled into two different cooperative behaviors (user and system).

D��5HSUHVHQWDWLRQ�RI�DQ�DFWLRQ�

E��5HSUHVHQWDWLRQ�RI�DQ�LQWHUDFWLRQ��

�)LJXUH����*UDSKLF�UHSUHVHQWDWLRQ�RI�,6'/�DFWLRQ�DQG�LQWHUDFWLRQ���
An action can either occur unconditionally, starting from the beginning of the execution of a
behavior (the so-called LQLWLDO�DFWLRQ), or it can be started when a specific condition is met, which, in
turn, may involve or not the occurrence of other actions during the execution of a behavior. A
causality relation, that sets the condition for the occurrence of an action, is made up of:

• a FDXVDOLW\�FRQGLWLRQ, which defines the way the occurrence of an action can depend on the
occurrence or on the non-occurrence of other actions;

• DFWLRQ�DWWULEXWHV¶�FRQVWUDLQV, which define how the values of information, time and location
attributes of result actions, established by the actions of the causality condition, can
influence in the occurrence of the action and the respective values of its attributes; and

• a probability attribute, which defines the occurrence probability of the result action when the
causality condition and the action attributes’ constrains are met at the execution of a
behavior. Value 1 is taken for the attribute of probability, i.e., when the two previous
constructions are met, the action must occur.

This way, the set of actions and interactions which define an ISDL behavior is given by a causality
relation:

〈a, Ι, Τ, Λ, ς〉, Γ, υ, 〈I-Refs, T-Refs, L-Refs, ITLRefs 〉, 〈I-Caus, T-Caus, L-Caus, ITL-Caus〉〉,
where:

• D�∈ $ is the identification name of the action in the system and it belongs to $ (set of action
occurrences);

• Ι, Τ , Λ, respectively; are the information, time and location value domains of action D��
• ς ⊆ Ι × Τ × Λ is the mixed value domains of action D;

• Γ ∈ && is the causality condition of action D and belongs to &&�(set of disjunctive causality
conditions); �

login

 ι : Password = "42342jfds.ps5."
 τ : time = 09:00, 30 - 03 - 2000
 λ : location = camolesi on usp

 login .system
 ι : Password = "8 H7kDfWs.ps5."

 τ : time | qualquer Tempo

 λ : location = camolesi on usp

 login

 ι : Password = "8H7kDfWs.ps5."

 τ : time = 09:00, 30 - 03 - 2000

 λ : location =camolesi on usp

• I-Refs, T-Refs, L-Refs, ITLRefs� respectively,�define the set of information, time, location
and mixed reference relations of action D; �

• I-Caus, T-Caus, L-Caus, ITL-Caus, respectively,�are the set of information, time, location
and mixed causality relations of action D�

A causality relation allows the modeling of the temporal order of the occurrences of actions. If we
take two actions D and E, which occur, respectively, in instants τD and τE the following basic
conditions of causality can be defined:

• HQDEOH�(D enables E - τD < τE) in which the occurrence of action D is a necessary condition for
the occurrence of the action E.

• GLVDEOH�(D disables E - τD > τE), defines that the non-ocurrence of action D until E takes place
is a necessary condition for the occurrence of action E. Assuming that D occurs and that E
still has not occurred, E is disabled;�

• FKRLFH�(either D�or E�must occur), defines a choice between D�and E, such that one of both
actions must occur. This choice is modelled as a mutual disabling. The corresponding
textual notation is {¬E��→ D, ¬D��→ E}.

• LQWHUODFH�(D�and E can happen the same time), define that the action D and E can happen in
parallel, not needing to be simultaneous.

• V\QFKURQL]H� (D synchronizes with E - τD = τE), defines that the occurrence of action D is a
condition for the occurrence of action E, so that D must happen�simultaneously with E.

Figure 2 presents some causality relations commonly found between two actions D and E. Behaviors
made up of multiple actions can be defined through the conjunction and disjunction of these
relations.

 5HODWLRQ�%HWZHHQ�DFWLRQV� *UDSKLF�5HSUHVHQWDWLRQ�
D enable E� a b

D�disable E a b

D choice�E a b

D interlace�E a b

D synchronize�E a b

)LJXUH���±�&RPPRQ�UHODWLRQV�EHWZHHQ�DFWLRQV��
In some behaviors, multiple basic conditions involving different actions should be met so that a
certain action can occur. Such situation can be represented through the conjunction of enabling,
disabling or synchronization conditions involving different actions. In other behaviors, at least a
basic condition or a conjunction of conditions should be met so that a certain action can happen.
Such situation can be represented through the disjunction of two or more basic causality conditions
or conjunctions of conditions.

A behavior and its actions can be represented formally in the following way:

[�%�] = * ⊗ { [ρ] (%) | ρ ∈ %�} ;
[〈D, ΓD, υD〉] (%) = [〈D, ΓD〉] (%) ⊗ [υD�@�(ΓD).

Symbols “[” and “]” represent the function that defines the (part of the) semantic of the execution of
the causality relation, or the set of relations. For example, [%�]� , [〈D, Γ, υ〉], [〈D, Γ〉], [〈D,

γ〉] e [υ], respectively, represent the semantic for the execution of behavior %, the causality
relation of action D, D’s causality condition, an alternative causality condition for D, and D’s
uncertainty attribute.

��� $GDSWLYH�,6'/�'HYLFH��
Figure 4 shows the basic architecture of the ISDL-Adp model. Such device is made up of a non-
adaptive ISDL kernel, enclosed by an adaptive layer. The adaptive layer is formed by the set of
before and after adaptive actions� The adaptive actions aim to accomplish changes in the behavior
of the ISDL specification. Prior to the execution of an ISDL non-adaptive behavior, the set of
precedent adaptive actions must be executed, as these actions may modify the structure of the non-
adaptive behavior. The ISDL non-adaptive actions follow and finally, the subsequent adaptive
actions are executed.

$GDSWLYH /D\HU

Behavior
Non-Adaptive

ISDL

After
Adaptive
Actions

Before
Adaptive
Actions

$GDSWLYH /D\HU

Behavior
Non-Adaptive

ISDL

After
Adaptive
Actions

Before
Adaptive
Actions

)LJXUH�����,6'/�$GDSWLYH�'HYLFH��

Taking as a base the general adaptive device presented in [13], the model ISDL-Adp can be defined
by beginning its operation at the initial configuration c0 in the form ISDL-Adp0= (C0, AR0, Σ, c0, A,
NA, BA, AA). At step k≥0, an input incentive moves ISDL-Adp to the next configuration and its
operation proceeds to step k+1 if and only if a non-null adaptive action is executed. So, as ISDL-
Adp is at its step k, in the form ISDL-Adpk = (Ck, ARCk, Σ, ck, A, NA, BA, AA), the execution of a
non-null adaptive action turns it into the form ISDL-Adpk+1 = (Ck+1, ARk+1, Σ, ck+1, A, NA, BA,
AA). In this formula:

• ISDL-Adp = (ISDL0, AM) is an adaptive device made up of an ISDL0 initial subjacent
device and an AM adaptive device;

• ISDL is the subjacent non-adaptive device, that had its operation described in section 2, at
step k. ISDL0 is the subjacent device, defined in the initial set RC0 (set of actions or
causality relations that represent a non-adaptive behavior). By definition, any action or non-
adaptive causality relation in RCk has its corresponding adaptive rule in ARCk;

• Ck is the set of all possible ISDL behaviors at step k, and ck∈Ck is its initial behavior at step
k. For k=0, we have, respectively, C0, the initial set of actions and valid causality relations
and c0∈C0, the initial ISDL0 and ISDL configuration.

• ε (“ empty”) denotes the absence of any other valid element of the corresponding set;

• Σ is the (finite, fixe) set of all possible events(including ε) that are valid input stimuli to AD
(ε∈Σ);

• A ⊆ C is the subset of both action and acceptance causality relations of the ISDL behavior;

• F = C - A is the set of rejection configuration;

• BA and AA are both adaptive actions’ set, that include the null action (ε ∈ BA∩AA)

• w = w1 w2 ... wn, is a string of stimuli, where wk ∈ Σ - {ε}, k =1, ...,n with n ≥ 0;

• NA, with ε∈NA, is a (finite, fixed) set of all possible symbols that can be generated as
output by ISDL-Adp as a side effect to the use of adaptive rules (actions and relations). Just
like in non-adaptive devices, such output string may(whenever convenient) be interpreted as
a sequence of the corresponding procedure calls;

• ARCk is the set of adaptive rules that define ISDL-Adp adaptive behavior at step K. ARCk is
given by a ratio ARCk ⊆ BA×C×Σ×C×ISDL×AA.

• ARC0 especially defines ISDL-Adp initial behavior. Adaptive actions change ISDL-Adp
ARCk current adaptive behavior to a new ARCk+1 behavior by adding and/or deleting
adaptive actions and interactions in ARCk. Rules arc∈ARCk have the form:

<<ba>, 〈〈a, Ι, Τ, Λ, ς〉, Γ, υ, 〈I-Refs, T-Refs, L-Refs, ITLRefs 〉, 〈I-Caus, T-Caus, L-Caus, ITL-Caus〉〉, <aa>>

meaning that, in response to some input stimulus σ∈Σ, arc initially executes the adaptive
action ba∈BA. If the execution of ba eliminates ar� from ARCk, the execution of arc is
aborted; otherwise, one uses the subjacent non-adaptive rule:

arc = 〈〈a, Ι, Τ, Λ, ς〉, Γ, υ, 〈I-Refs, T-Refs, L-Refs, ITLRefs 〉, 〈I-Caus, T-Caus, L-Caus, ITL-Caus〉〉∈ RCk,

as previously described; and finally, the adaptive action aa∈AA is executed.

• ARC is defined as the set of all possible adaptive rules for ISDL-Adp;

• RC is defined as the set of all possible actions and non-adaptive causality relations for
ISDL-Adp;

• AM ⊆ BA×RC×AA, defined for a particular ISDL-Adp adaptive device, is an adaptive
mechanism to be applied to all rules at step k in RCk ⊆ RC. AM must be interpreted in the
same way as if it were applied to any sub domain RCk ⊆ RC. This will determine a single
pair of adaptive actions associated to each non-adaptive rule.

The ARCk ⊆ ARC set can be obtained by collecting all adaptive rules built by the association of
each pair of adaptive actions to the correspondent non-adaptive rules in RCk.

ISDLi non-adaptive behavior, at each step of the adaptive device’ s execution forms the ISDL-Adp
model through its actions, its basic causality conditions and the relations between actions. An
,6'/�$GS action can be represented by:

〈〈a,Ι,Τ,Λ,ς〉 : A , Æ 〈〈a‘,Ι‘,Τ‘,Λ‘,ς‘〉, Γ‘, υ‘, 〈I-Refs‘, T-Refs‘, L-Refs‘, ITLRefs‘ 〉, 〈I-Caus‘, T-Caus‘, L-Caus‘, ITL-Caus‘〉〉 : B

Where:
〈〈 a‘, Ι‘, Τ‘, Λ‘, ς‘〉, Γ‘, υ‘, 〈I-Refs‘, T-Refs‘, L-Refs‘, ITLRefs‘ 〉, 〈I-Caus‘, T-Caus‘, L-Caus‘, ITL-Caus‘〉〉
stands fοr the situation of Ci behavior prior to the execution of an daptive action. It is calculated
according to the previous definition for ISDL behaviors;

Similar to the definition proposed in [1] for Adaptive Statecharts, ISDL elementary adaptive actions
assume the following format: SUHVHW�>SDWWHUQ�RI�WKH�SURGXFWLRQ@, where SUHVHW�represents one of the
three types of elementary adaptive actions to be executed: "? " (inspection action), "-" (elimination
action) and "+" (insert action), while the SDWWHUQ� RI� WKH� SURGXFWLRQ corresponds to an ISDL
production:

〈〈a‘, Ι‘,Τ‘, Λ‘, ς‘〉, Γ‘, υ‘, 〈I-Refs‘, T-Refs‘, L-Refs‘, ITLRefs‘ 〉, 〈I-Caus‘, T-Caus‘, L-Caus‘, ITL-Caus‘〉〉

Figure 3 shows the action :ULWHB/HVVRQ modeled in ISDL-Adp and its previous(A) and subsequent
(B) adaptive actions. The adaptive actions are inserted in boxes located above and bellow the
traditional action of the ISDL model.

)LJXUH���±�5HSUHVHQWDWLRQ�RI�$GDSWLYH�$FWLRQV��
The operation of the ISDL-Adp model happens through the modification of the actions belonging to
a behavior, through the gradual evolution of the set of rules, by adding or removing actions made
through the execution of the adaptive actions.

In its initial situation, ISDL-Adp receives a sequence of external events. The transitions are
performed according to that sequence, by consuming the external events and repeating the process
until the end of the sequence. At each received event a check is done to determine which
production(or productions) is next in execution. As far as the ISDL-Adp execution is concerned, the
existence of adaptive action A means that this will be the first to be executed, whereas if B is
present, it will be the last to be executed.

��� $Q�,OOXVWUDWLYH�([DPSOH��
According to [16], the latter years of the 20th century saw one of the great triumphs of the human
skill: the consolidation of the Internet as a shared virtual space of distributed architecture and global
reach, where a growing variety of information, resources and services are available. The Internet
topped the use of hypertext and hypermedia in the exchange of ideas, information and services,
because its structural and navigation core is based on the hypertext notion.

Thus began one of the technologies that increased and made easier the interface between the user
and the available information in computers [17]. Nowadays, thousands of documents are daily put
into the WEB. However, those documents are prepared according to a single style, thus ignoring the
great variety of users that use them. Studies have been made, in an attempt to supply the users’
specific demands, i. e., the systems must adapt themselves to the users’ needs and profiles.

According to [16], the Adaptive Hypermedia has lately been the object of a great interest, thus
increasing the number of events worldwide where this matter is a highlight. Several areas of
Adaptive Hypermedia have been identified, such as e-commerce, marketing, education, information
systems, advertising and leisure. [18], shows that the educational hypermedia area leads in research
and applications It is fueled by Distance Learning and Information Systems.

[19] presents a proposal for the development of an adaptive course on computer concepts, a self-
teaching adaptive course that uses Adaptive Hypermedia adaptation methods to offer a larger
interaction to the student. In this context the use of ISDL-Adp model is proposed for the modeling
of this course.

Figure 5 [19] shows the “:HOFRPH�scene” of this course. Such scene is introduced to the user after
his registration in the system, or after a successful login. If it is the first time the user access the
adaptive course on computer concepts, he can go to the "6WDUW� FRXUVH" option. Users that have
already began the course, can go to a "/DVW�VHVVLRQ" shortcut that directs them to resume the course
from the point they had left. They do not need to go through previously studied modules. The
system also shows a summary of previously studied subjects in the visual format of a traffic light.

Write_Lesson
ι : TInf: TextString

A : ? [sn_em, ι , τ, λ]
 +[Lesson_TCH]
 -[Log_Sys]

B : ? [rc_em, ι , τ, λ]

 -[Lesson_STD]

+

[Apr_Rvs]

ISDL Action

Before Adaptive Actions

After Adaptive Actions

The traffic light shows the current situation (formalized, non-formalized, in process) of each studied
module. The green light indicates that the module was successfully finished; the yellow light
indicates that the module is in process and the red light shows that the module has not been initiated
yet.

$GDSWLYH�&RXUVH
&RQFHSWV��� +DUGZDUH�± 6RIWZDUH�± ,QWHUQHW

$EVWUDFW
This course has by
object the use of
approaches to adapt
the content of a
course in relation its
perfil

Modules

1. Concepts
2. Hardware
3. Software
4. Internet

)RUPDOL]HG�PRGXOH
0RGXOH�LQ�SURFHVV
1RQ�IRUPDOL]HG�PRGXOH

�����������
	���
���� $OPLU ����� �
� ����

� ��� ��� � ��� �"!#� ��$ �%
 &'� � �)(�	*���
+ � ��� � �,���,�,�.-�/�0�1*0�231�/�0,0�4
!5���������6��(�87 ��	%-�/�9

Preferences
Register Data
Interest
Historical
Test
Search

Start Course
Last Session
End Session

Start Course
Last Session
End Session

$GDSWLYH�&RXUVH
&RQFHSWV��� +DUGZDUH�± 6RIWZDUH�± ,QWHUQHW

$EVWUDFW
This course has by
object the use of
approaches to adapt
the content of a
course in relation its
perfil

Modules

1. Concepts
2. Hardware
3. Software
4. Internet

Modules

1. Concepts
2. Hardware
3. Software
4. Internet

)RUPDOL]HG�PRGXOH
0RGXOH�LQ�SURFHVV
1RQ�IRUPDOL]HG�PRGXOH

�����������
	���
���� $OPLU ����� �
� ����

� ��� ��� � ��� �"!#� ��$ �%
 &'� � �)(�	*���
+ � ��� � �,���,�,�.-�/�0�1*0�231�/�0,0�4
!5���������6��(�87 ��	%-�/�9

Preferences
Register Data
Interest
Historical
Test
Search

)RUPDOL]HG�PRGXOH
0RGXOH�LQ�SURFHVV
1RQ�IRUPDOL]HG�PRGXOH

�����������
	���
���� $OPLU ����� �
� ����

� ��� ��� � ��� �"!#� ��$ �%
 &'� � �)(�	*���
+ � ��� � �,���,�,�.-�/�0�1*0�231�/�0,0�4
!5���������6��(�87 ��	%-�/�9

Preferences
Register Data
Interest
Historical
Test
Search

Start Course
Last Session
End Session

Start Course
Last Session
End Session

)LJXUH�����7KH�:HOFRPH�6FHQH�IURP�WKH�$GDSWLYH�&RXUVH�RQ�&RPSXWHU�6FLHQFH��

The :HOFRPH� Scene sub-behavior is shown in Figure 6; this diagram represents the ISDL-Adp
modelling of the :HOFRPH scene. The :HOFRPH Scene sub-behavior is compose up of the parallel
(interlace) execution of actions 6KZB7LWOH, 6KZB0DVFRW, 6KZB$EVWUDFW, 6KZB0HQX, 6KZB%XWWRQ
and 6KZB7UDILF/KW. Such actions are responsible, respectively, for the presentation of title of scene,
the presentation of the responsible mascot for aiding the user in the accomplishment of the course;
the introduction of the label with information on the abstract of the course that is being taken,
introduction of the course’ s option menu, presentation of the key that sends the user to the section
(lesson) to be performed, and introduction of the traffic light that indicates the current situation of
each module of the chosen course. Actions 6KZB%XWWRQ and 6KZB7UDILF/KW, have precedent
adaptive actions. The preceding adaptive actions along with the 6KZB%XWWRQ action enable the user
to check which of the course’ s corresponding scene has been executed. Thus, these joint actions
allow the execution of the module’ s first lesson or the last lesson done by a student. The preceding
adaptive actions along with the 6KZB7UDILF/KW action are responsible for the verification of each
module’ s situation in the course taken, and, this way, the adaptation of the interface can be done, by
showing the current situation of each module of the accessed course.

:.;=<?>�@.A BDC E
FHG�IDJ.K,L,M B A N�EPO.Q'R�S*T�E IU G'M BVQ�WVXZY\[3] ^\[_ F`G�abL T�c G'M A c=BDR�SdE�e

U G'M BVQ�W�f3[\[3] ^\[_

:�;g<?>'h L T�c\Q�B
F`G�a T�i G BjE=k3BU G�M BVQ�W*l\[\[3] m\[\[_
:.;g<)> J)n T\BDS L c=B FHG�a T�i G BjE=k3B�e

apo R G C A T\B n Q3k'e
C E3i G'M A c=BDR�SdE�e

U G'M BjQ�W*Y\[3] m\[\[_

:.;g<)>'hbE o R
A Grq's t Sdur>�v o cZw

x sdy Br>�:�B L S*B*w
x sdy Br>�zgT\Br>�:�cgE o E=w

F`G�a T�i G BjE=k3BU G'M BVQ�W*l\[\[3] m\[\[_
:.;=<?> y R\BdBVQ o

A G�q's t Sdur>�O)R�S*w
x s zgT\B >�[�XHw
x s zgT\B >�[3{Zw
x s zgT\B >�[3mZw
x s zgT\B >�[g|gw

FHG Q M B G C A T\Br>�Q M B�eU G'M BjQ�WVXZY\[3]�XZ}\[3_
:.;g<)>�@.S L u*uDA c,z,;\B

:HOFRPH�6FHQH

)LJXUH�����,6'/�$GS�0RGHOLQJ���:HOFRPH�6FHQH��

Figure 7 show the new behavior :HOFRPH�6FHQH�after running before adaptive actions. The action
6KZB%XWWRQ went to change to present the last scene that a student used and the last class that the
student was doing. The action 6KZB7UDIILF�OKW had changed to show which modules that student
finished, non started or it is studing. The OVWB�� until OVWB�� represent this situation. The value equal
1 (green) indicates that student finished the module, the value 2 (yellow) illustrates that student was
making this module and the value 0 (red) represents that he didn’ t start this module. It can be
observed in this behavior the adaptive before action were to used to represent the changes in
behavior of this scene.

6KZB7LWOH
L���$GDSWLYH�&RXUVH�
O��SWR��������

L��PDVF��SLFWXUH�
O��SWR��������

6KZB0DVFRW
L��PVJ��WH[W
O��SWR���������

6KZB6XPPDU\ L��PVJ��WH[W�
���PQX��OLVWER[�
���OHJ��SLFWXUH�
O��SWR��������

6KZB0HQX
�

L��PVJ��WH[W
O��SWR���������

6KZB%WB/VWB6FHQH

L��RSW��OLVWBRSW�
����^OVWB��� ��
�����OVWB��� ��
�����OVWB��� ��
�����OVWB��� ��`�
O��SWR���������

6KZB7UDIILF/KW

:HOFRPH�6FHQH

)LJXUH�����:HOFRPH�6FHQH�DIWHU�UXQQLQJ�EHIRUH�DGDSWLYH�DFWLRQV�,6'/�$GS���

��� &RQFOXVLRQ�
This paper has shown the basic structure of the ISDL-Adp Model that is being developed for the
specification of adaptive distributed systems at modeling of Adaptive Hypermedia. Such model
results from joining the concepts of a non-adaptive ISDL model and the concepts of adaptive
devices.

Just as in the ISDL model, in the ISDL-Adp model an entity models an object and features its
behavior (methods) and state (attributes). That is the reason why a system can be structured, for
example, as a hierarchy of abstractions (entities) and the behavior of entities can be encapsulated, as
these are only accessible through the defined interaction points in its interface.

The definition of adaptive actions in the structuring of behaviors, in turn, allows the use of the
addition and of the optimization of actions and causality relations in a dynamic way. This makes the
ISDL model more flexible and one with a larger expression power for problems that show self-
modifying characteristics. When using the ISDL-Adp model the specialist can model behaviors that
have their structure modified during the execution of the system. The adaptive resources allow the
insertion or elimination of actions and causality relations on each execution of the behavior, thus
making it possible, with the aid of this model, the _expression of applications with great
representation complexity.

The illustrative example shown above referring to the modeling of a Adaptive Course of
Introduction Computer Science, was intended to show the use of the model in the project of these
applications. Such example proves that the model can take the representation of specifications that
have adaptive features, as shown in the specification of the :HOFRPH�6FHQH sub-behavior.

As a continuation of this work, adaptive extensions are being formalized for all the architectural
concepts of the ISDL model. Such extension can turn the project of its specifications a much easier
task for the specialist. Furthermore, specifications with larger consistence and easier understanding
will be able to be achieved. Studies are also being done regarding the development of a tool that
will use the new model to aid the specialist in the development of his specifications.

%LEOLRJUDSK\

[1] J. Rady, “ STAD-Uma ferramenta para representação e simulação de sistemas através de
statecharts adaptativos” , Tese de Doutorado, Escola Politécnica, Universidade de São Paulo,
São Paulo, 1995.

[2] T. Bolognesi, J. Lagemaat, and C.A. Vissers, “ LOTOSphere: software development with
LOTOS” , Kluwer Academic Publishers, Netherlands, 1995.

[3] ISO/IEC 9074, “ Information Processing Systems - Open System Interconnection - Estelle - A
Formal Description Technique Based on an Extended State Transition Model” , ISO, 1989.

[4] ISO IS 8807, "Information Processing Systems - Open Systems Interconnection - LOTOS - A
Formal Description Technique Based on the Temporal Ordering of Observational
Behaviour", ISO, 1989.

[5] ITU-T, “ Recommendation Z.100” , White Book and Annexes, 1994.

[6] T. Agerwala, “ Putting Petri nets to work” , Computer, v.12, n.12, December, 1979, p.p. 85-94.

[7] D. Harel, A. Pnueli, J.P.Schmidit, and R. Sherman,. “ On the formal semantics of statecharts” ,
In: Symposyum on logic in Computer Science, 2°, Ithaca, Proceedings, IEEE Press, New
York, 1987, p.p.54-64.

[8] D. Quartel, “ Actions Relations – Basic design concepts for behaviour modelling and
refinement” . Ph.D Thesis, Netherlands, 1997.

[9] Testbed Studio Tool, http://www.bizzdesign.com, 2003.

[10] C.G. Farias, and L.F. Pires, “ Uma linguagem para desenvolvimento de sistemas distribuídos” .
XIX Simpósio Brasileiro de Redes de Computadores, Florianópolis, Maio, 2001, p.p. 82-97.

[11] J.J. Neto, “ Contribuição à metodologia de construção de compiladores. Tese de Livre
Docência” , Escola Politécnica, Universidade de São Paulo, São Paulo, 1993.

[12] M. Iwai, “ Um formalismo gramatical adaptativo para linguagens dependentes de contexto” ,
Tese de Doutorado. Escola Politécnica, Universidade de São Paulo, São Paulo, 2000.

[13] J.J. Neto, “ Adaptive rule-driven devices - general formulation and case study” , CIAA 2001 -
Sixth International Conference on Implementation and Application of Automata, Pretoria
University, Pretoria-África do Sul, July,2001.

[14] C.A.Vissers, L.F. Pires, D. Quartel, and M.V. Sinderen, “ The architectural design of
distributed systems” , Lecture notes for The design of telematic systems, University of
Twente, Enschede-Netherlands, 1998.

[15] A.R. Camolesi, “ Uma metodologia para o Design de Serviços de TV-Interativa” , Dissertação
de Mestrado, PPG-CC, UFSCar, Fevereiro, 2000.

[16] L.A.M. Palazzo, “ Modelos Proativos para Hipermídia Adaptativa” , Tese de Doutorado.
Universidade Federal do Rio Grande do Sul, Instituto de Informática. Porto Alegre (RS),
janeiro de 2000. Disponível em: www.inf.ufrgs.br/~palazzo/docs/Artigos/00 XISBIE.pdf

[17] B.R. Marques, L.F. Melo, M.T. Chella, and T.R. Quirino, “ Tecnologias Para Ambientes
Colaborativos de Ensino – Hipermídia” , Faculdade de Engenharia Elétrica e de Computação
– FEEC. Universidade Estadual de Campinas – UNICAMP, janeiro de 2001. Avaible:
www.decom.fee.unicamp.br/~leonimer/hipermidia.html

[18] L.A.M. Palazzo, “ Sistemas de Hipermídia Adaptativa” , XXI Jornada de Atualização em
Informática. SBC 2002. Florianópolis-SC, Julho, 2002.

[19] E. Hayashida, “ Uma proposta para um curso adaptativo de Introdução à Informática” ,
Monografia apresentada no curso de Especialização Desenvolvimento de Software para Web,
Instituto Municipal de Ensino Superior de Assis, Junho, 2003.

